These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 33017504)

  • 1. Cation Additive Enabled Rechargeable LiOH-Based Lithium-Oxygen Batteries.
    Bi X; Li M; Liu C; Yuan Y; Wang H; Key B; Wang R; Shahbazian-Yassar R; Curtiss LA; Lu J; Amine K
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):22978-22982. PubMed ID: 33017504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Lithium-Oxygen Batteries Based on Lithium Hydroxide Formation and Decomposition.
    Zhang X; Dong P; Song MK
    Front Chem; 2022; 10():923936. PubMed ID: 35844634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-Trapping Single-Atom Co-N
    Zhang W; Zheng J; Wang R; Huang L; Wang J; Zhang T; Liu X
    Small; 2023 Aug; 19(33):e2301391. PubMed ID: 37086134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling Water-Proof Li Anodes with LiOH-Based Cathodes Enables Highly Rechargeable Lithium-Air Batteries Operating in Ambient Air.
    Lei J; Gao Z; Tang L; Zhong L; Li J; Zhang Y; Liu T
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103760. PubMed ID: 34894094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Role of Lithium Iodide in Lithium-Oxygen Batteries.
    Bi X; Li J; Dahbi M; Alami J; Amine K; Lu J
    Adv Mater; 2022 Jan; 34(1):e2106148. PubMed ID: 34854504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unravelling the Complex LiOH-Based Cathode Chemistry in Lithium-Oxygen Batteries.
    Zhang X; Dong P; Noh S; Zhang X; Cha Y; Ha S; Jang JH; Song MK
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202212942. PubMed ID: 36413636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A High-Performance Li-O
    Zhou B; Guo L; Zhang Y; Wang J; Ma L; Zhang WH; Fu Z; Peng Z
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28585309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freestanding MOF-Derived Honeycomb-Shape Porous MnOC@CC as an Electrocatalyst for Reversible LiOH Chemistry in Li-O
    Huang Y; Liu Y; Tang D; Li W; Li J
    ACS Appl Mater Interfaces; 2023 May; 15(19):23115-23123. PubMed ID: 37129923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding LiOH Chemistry in a Ruthenium-Catalyzed Li-O
    Liu T; Liu Z; Kim G; Frith JT; Garcia-Araez N; Grey CP
    Angew Chem Int Ed Engl; 2017 Dec; 56(50):16057-16062. PubMed ID: 29058366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress in Developing a LiOH-Based Reversible Nonaqueous Lithium-Air Battery.
    Gao Z; Temprano I; Lei J; Tang L; Li J; Grey CP; Liu T
    Adv Mater; 2023 Jan; 35(1):e2201384. PubMed ID: 36063023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comment on "Cycling Li-O₂ batteries via LiOH formation and decomposition".
    Viswanathan V; Pande V; Abraham KM; Luntz AC; McCloskey BD; Addison D
    Science; 2016 May; 352(6286):667. PubMed ID: 27151860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Capacity and Stable Li-O
    Xiong Q; Huang G; Zhang XB
    Angew Chem Int Ed Engl; 2020 Oct; 59(43):19311-19319. PubMed ID: 32692471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic-Scale Cryo-TEM Studies of the Electrochemistry of Redox Mediator in Li-O
    Gao Z; Yao J; Yan J; Sun J; Du C; Dai Q; Su Y; Zhao J; Chen J; Li X; Li H; Zhang P; Ma J; Qiu H; Zhang L; Tang Y; Huang J
    Small; 2024 Feb; ():e2311739. PubMed ID: 38420904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cycling Li-O₂ batteries via LiOH formation and decomposition.
    Liu T; Leskes M; Yu W; Moore AJ; Zhou L; Bayley PM; Kim G; Grey CP
    Science; 2015 Oct; 350(6260):530-3. PubMed ID: 26516278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operando Observation of the De-Evolution/Evolution Process of Hydrated LiOH in Moisture-Assisted Li-O
    Kim H; Lee H; Choi W; Yoon G; Jung C; Kim M; Kim T; Park J; Im D
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29120-29126. PubMed ID: 37294066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries.
    Kwabi DG; Batcho TP; Amanchukwu CV; Ortiz-Vitoriano N; Hammond P; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2014 Aug; 5(16):2850-6. PubMed ID: 26278088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Stabilization Effect of CO
    Chen K; Huang G; Ma JL; Wang J; Yang DY; Yang XY; Yu Y; Zhang XB
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16661-16667. PubMed ID: 32537811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comment on "Cycling Li-O₂ batteries via LiOH formation and decomposition".
    Shen Y; Zhang W; Chou SL; Dou SX
    Science; 2016 May; 352(6286):667. PubMed ID: 27151858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator.
    Guo Z; Li C; Liu J; Wang Y; Xia Y
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7505-7509. PubMed ID: 28524448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.