These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 33017560)
1. The hippo kinase STK38 ensures functionality of XPO1. Martin AP; Camonis JH Cell Cycle; 2020 Nov; 19(22):2982-2995. PubMed ID: 33017560 [TBL] [Abstract][Full Text] [Related]
2. STK38 kinase acts as XPO1 gatekeeper regulating the nuclear export of autophagy proteins and other cargoes. Martin AP; Jacquemyn M; Lipecka J; Chhuon C; Aushev VN; Meunier B; Singh MK; Carpi N; Piel M; Codogno P; Hergovich A; Parrini MC; Zalcman G; Guerrera IC; Daelemans D; Camonis JH EMBO Rep; 2019 Nov; 20(11):e48150. PubMed ID: 31544310 [TBL] [Abstract][Full Text] [Related]
3. The STK38-XPO1 axis, a new actor in physiology and cancer. Martin AP; Aushev VN; Zalcman G; Camonis JH Cell Mol Life Sci; 2021 Mar; 78(5):1943-1955. PubMed ID: 33145612 [TBL] [Abstract][Full Text] [Related]
4. XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer. Kim J; McMillan E; Kim HS; Venkateswaran N; Makkar G; Rodriguez-Canales J; Villalobos P; Neggers JE; Mendiratta S; Wei S; Landesman Y; Senapedis W; Baloglu E; Chow CB; Frink RE; Gao B; Roth M; Minna JD; Daelemans D; Wistuba II; Posner BA; Scaglioni PP; White MA Nature; 2016 Oct; 538(7623):114-117. PubMed ID: 27680702 [TBL] [Abstract][Full Text] [Related]
5. Nucleo-cytoplasmic transport as a therapeutic target of cancer. Gravina GL; Senapedis W; McCauley D; Baloglu E; Shacham S; Festuccia C J Hematol Oncol; 2014 Dec; 7():85. PubMed ID: 25476752 [TBL] [Abstract][Full Text] [Related]
6. Ribosomal Biogenesis and Translational Flux Inhibition by the Selective Inhibitor of Nuclear Export (SINE) XPO1 Antagonist KPT-185. Tabe Y; Kojima K; Yamamoto S; Sekihara K; Matsushita H; Davis RE; Wang Z; Ma W; Ishizawa J; Kazuno S; Kauffman M; Shacham S; Fujimura T; Ueno T; Miida T; Andreeff M PLoS One; 2015; 10(9):e0137210. PubMed ID: 26340096 [TBL] [Abstract][Full Text] [Related]
7. Nuclear export of the yeast hexokinase 2 protein requires the Xpo1 (Crm1)-dependent pathway. Peláez R; Herrero P; Moreno F J Biol Chem; 2009 Jul; 284(31):20548-55. PubMed ID: 19525230 [TBL] [Abstract][Full Text] [Related]
8. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Lai C; Xu L; Dai S Clin Transl Med; 2024 May; 14(5):e1684. PubMed ID: 38783482 [TBL] [Abstract][Full Text] [Related]
9. XPO1-dependent nuclear export as a target for cancer therapy. Azizian NG; Li Y J Hematol Oncol; 2020 Jun; 13(1):61. PubMed ID: 32487143 [TBL] [Abstract][Full Text] [Related]
10. Targeting XPO1-Dependent Nuclear Export in Cancer. Kim E; Mordovkina DA; Sorokin A Biochemistry (Mosc); 2022 Jan; 87(Suppl 1):S178-S70. PubMed ID: 35501995 [TBL] [Abstract][Full Text] [Related]
11. Effects of exportin 1 on nuclear transport and meiotic resumption in porcine full-grown and growing oocytes. Onuma A; Fujioka YA; Fujii W; Sugiura K; Naito K Biol Reprod; 2018 Apr; 98(4):501-509. PubMed ID: 29228114 [TBL] [Abstract][Full Text] [Related]
12. Molecular profiling of anastatic cancer cells: potential role of the nuclear export pathway. Seervi M; Sumi S; Chandrasekharan A; Sharma AK; SanthoshKumar TR Cell Oncol (Dordr); 2019 Oct; 42(5):645-661. PubMed ID: 31147963 [TBL] [Abstract][Full Text] [Related]
14. Expanded polyglutamine domain possesses nuclear export activity which modulates subcellular localization and toxicity of polyQ disease protein via exportin-1. Chan WM; Tsoi H; Wu CC; Wong CH; Cheng TC; Li HY; Lau KF; Shaw PC; Perrimon N; Chan HY Hum Mol Genet; 2011 May; 20(9):1738-50. PubMed ID: 21300695 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for assembly and disassembly of the CRM1 nuclear export complex. Dong X; Biswas A; Chook YM Nat Struct Mol Biol; 2009 May; 16(5):558-60. PubMed ID: 19339972 [TBL] [Abstract][Full Text] [Related]
16. Nuclear export mediated regulation of microRNAs: potential target for drug intervention. Muqbil I; Bao B; Abou-Samra AB; Mohammad RM; Azmi AS Curr Drug Targets; 2013 Sep; 14(10):1094-100. PubMed ID: 23834155 [TBL] [Abstract][Full Text] [Related]
17. Altered Nuclear Export Signal Recognition as a Driver of Oncogenesis. Taylor J; Sendino M; Gorelick AN; Pastore A; Chang MT; Penson AV; Gavrila EI; Stewart C; Melnik EM; Herrejon Chavez F; Bitner L; Yoshimi A; Lee SC; Inoue D; Liu B; Zhang XJ; Mato AR; Dogan A; Kharas MG; Chen Y; Wang D; Soni RK; Hendrickson RC; Prieto G; Rodriguez JA; Taylor BS; Abdel-Wahab O Cancer Discov; 2019 Oct; 9(10):1452-1467. PubMed ID: 31285298 [TBL] [Abstract][Full Text] [Related]
18. Atomic basis of CRM1-cargo recognition, release and inhibition. Fung HY; Chook YM Semin Cancer Biol; 2014 Aug; 27():52-61. PubMed ID: 24631835 [TBL] [Abstract][Full Text] [Related]
19. Understanding XPO1 target networks using systems biology and mathematical modeling. Muqbil I; Kauffman M; Shacham S; Mohammad RM; Azmi AS Curr Pharm Des; 2014; 20(1):56-65. PubMed ID: 23530499 [TBL] [Abstract][Full Text] [Related]
20. Furry protein suppresses nuclear localization of yes-associated protein (YAP) by activating NDR kinase and binding to YAP. Irie K; Nagai T; Mizuno K J Biol Chem; 2020 Mar; 295(10):3017-3028. PubMed ID: 31996378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]