BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33017609)

  • 21. Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3.
    Tsai YJ; Chen BH
    Int J Nanomedicine; 2016; 11():1907-26. PubMed ID: 27226712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catechin prodrugs and analogs: a new array of chemical entities with improved pharmacological and pharmacokinetic properties.
    Bansal S; Vyas S; Bhattacharya S; Sharma M
    Nat Prod Rep; 2013 Oct; 30(11):1438-54. PubMed ID: 24056761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of pro-/active MMP-2 by green tea catechins and prediction of their interaction by molecular docking studies.
    Chowdhury A; Nandy SK; Sarkar J; Chakraborti T; Chakraborti S
    Mol Cell Biochem; 2017 Mar; 427(1-2):111-122. PubMed ID: 28013477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of the galloyl moiety in tea catechins on binding affinity for human serum albumin.
    Minoda K; Ichikawa T; Katsumata T; Onobori K; Mori T; Suzuki Y; Ishii T; Nakayama T
    J Nutr Sci Vitaminol (Tokyo); 2010; 56(5):331-4. PubMed ID: 21228505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical.
    Nanjo F; Goto K; Seto R; Suzuki M; Sakai M; Hara Y
    Free Radic Biol Med; 1996; 21(6):895-902. PubMed ID: 8902534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural characteristics of green tea catechins for formation of protein carbonyl in human serum albumin.
    Ishii T; Mori T; Ichikawa T; Kaku M; Kusaka K; Uekusa Y; Akagawa M; Aihara Y; Furuta T; Wakimoto T; Kan T; Nakayama T
    Bioorg Med Chem; 2010 Jul; 18(14):4892-6. PubMed ID: 20598557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitory effects of green tea catechins on the activity of human matrix metalloproteinase 7 (matrilysin).
    Oneda H; Shiihara M; Inouye K
    J Biochem; 2003 May; 133(5):571-6. PubMed ID: 12801907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vasohibin-2 is required for epithelial-mesenchymal transition of ovarian cancer cells by modulating transforming growth factor-β signaling.
    Norita R; Suzuki Y; Furutani Y; Takahashi K; Yoshimatsu Y; Podyma-Inoue KA; Watabe T; Sato Y
    Cancer Sci; 2017 Mar; 108(3):419-426. PubMed ID: 28064471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and evaluation of the epithelial-to- mesenchymal inhibitory activity of indazole-derived imidazoles as dual ALK5/p38α MAP inhibitors.
    Liu YY; Guo Z; Wang JY; Wang HM; Da Qi J; Ma J; Piao HR; Jin CH; Jin X
    Eur J Med Chem; 2021 Apr; 216():113311. PubMed ID: 33677350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic behavior of tea catechins interacting with lipid membranes as determined by NMR spectroscopy.
    Uekusa Y; Kamihira M; Nakayama T
    J Agric Food Chem; 2007 Nov; 55(24):9986-92. PubMed ID: 17966973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding affinity of tea catechins for HSA: characterization by high-performance affinity chromatography with immobilized albumin column.
    Ishii T; Minoda K; Bae MJ; Mori T; Uekusa Y; Ichikawa T; Aihara Y; Furuta T; Wakimoto T; Kan T; Nakayama T
    Mol Nutr Food Res; 2010 Jun; 54(6):816-22. PubMed ID: 20013883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-Wide Analysis of Serine Carboxypeptidase-Like Acyltransferase Gene Family for Evolution and Characterization of Enzymes Involved in the Biosynthesis of Galloylated Catechins in the Tea Plant (
    Ahmad MZ; Li P; She G; Xia E; Benedito VA; Wan XC; Zhao J
    Front Plant Sci; 2020; 11():848. PubMed ID: 32670320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Green tea catechins inhibit the cultured smooth muscle cell invasion through the basement barrier.
    Maeda K; Kuzuya M; Cheng XW; Asai T; Kanda S; Tamaya-Mori N; Sasaki T; Shibata T; Iguchi A
    Atherosclerosis; 2003 Jan; 166(1):23-30. PubMed ID: 12482547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catechins containing a galloyl moiety as potential anti-HIV-1 compounds.
    Zhao Y; Jiang F; Liu P; Chen W; Yi K
    Drug Discov Today; 2012 Jun; 17(11-12):630-5. PubMed ID: 22414543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pH-Dependent radical scavenging capacity of green tea catechins.
    Muzolf M; Szymusiak H; Gliszczyńska-Swigło A; Rietjens IM; Tyrakowska B
    J Agric Food Chem; 2008 Feb; 56(3):816-23. PubMed ID: 18179168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The galloyl moiety enhances the inhibitory activity of catechins and theaflavins against α-glucosidase by increasing the polyphenol-enzyme binding interactions.
    Sun L; Song Y; Chen Y; Ma Y; Fu M; Liu X
    Food Funct; 2021 Jan; 12(1):215-229. PubMed ID: 33295908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catechins and Its Role in Chronic Diseases.
    Shirakami Y; Sakai H; Kochi T; Seishima M; Shimizu M
    Adv Exp Med Biol; 2016; 929():67-90. PubMed ID: 27771921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural Properties of Green Tea Catechins.
    Botten D; Fugallo G; Fraternali F; Molteni C
    J Phys Chem B; 2015 Oct; 119(40):12860-7. PubMed ID: 26369298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Green tea catechins inhibit VEGF-induced angiogenesis in vitro through suppression of VE-cadherin phosphorylation and inactivation of Akt molecule.
    Tang FY; Nguyen N; Meydani M
    Int J Cancer; 2003 Oct; 106(6):871-8. PubMed ID: 12918064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved.
    Chung JY; Huang C; Meng X; Dong Z; Yang CS
    Cancer Res; 1999 Sep; 59(18):4610-7. PubMed ID: 10493515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.