BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33017648)

  • 1. Proteomic approaches for the profiling of ubiquitylation events and their applications in drug discovery.
    Hu Z; Li H; Wang X; Ullah K; Xu G
    J Proteomics; 2021 Jan; 231():103996. PubMed ID: 33017648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquitin diGLY Proteomics as an Approach to Identify and Quantify the Ubiquitin-Modified Proteome.
    Fulzele A; Bennett EJ
    Methods Mol Biol; 2018; 1844():363-384. PubMed ID: 30242721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive profiling of protein ubiquitination for drug discovery.
    Xu G; Jaffrey SR
    Curr Pharm Des; 2013; 19(18):3315-28. PubMed ID: 23151132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E. coli-Based Selection and Expression Systems for Discovery, Characterization, and Purification of Ubiquitylated Proteins.
    Levin-Kravets O; Keren-Kaplan T; Attali I; Sharon I; Tanner N; Shapira D; Rathi R; Persaud A; Shohat N; Shusterman A; Prag G
    Methods Mol Biol; 2018; 1844():155-166. PubMed ID: 30242709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquitinomics: History, methods, and applications in basic research and drug discovery.
    Steger M; Karayel Ö; Demichev V
    Proteomics; 2022 Aug; 22(15-16):e2200074. PubMed ID: 35353442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microarray of ubiquitylated proteins for profiling deubiquitylase activity reveals the critical roles of both chain and substrate.
    Loch CM; Strickler JE
    Biochim Biophys Acta; 2012 Nov; 1823(11):2069-78. PubMed ID: 22626734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in defining the ubiquitylome.
    Porras-Yakushi TR; Hess S
    Expert Rev Proteomics; 2014 Aug; 11(4):477-90. PubMed ID: 24961939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Analysis of the Brain Ubiquitylome in Alzheimer's Disease.
    Abreha MH; Dammer EB; Ping L; Zhang T; Duong DM; Gearing M; Lah JJ; Levey AI; Seyfried NT
    Proteomics; 2018 Oct; 18(20):e1800108. PubMed ID: 30230243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale Identification and Time-course Quantification of Ubiquitylation Events During Maize Seedling De-etiolation.
    Wang YF; Chao Q; Li Z; Lu TC; Zheng HY; Zhao CF; Shen Z; Li XH; Wang BC
    Genomics Proteomics Bioinformatics; 2019 Dec; 17(6):603-622. PubMed ID: 32179194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the ubiquitin-regulated signaling networks by mass spectrometry-based proteomics.
    Low TY; Magliozzi R; Guardavaccaro D; Heck AJ
    Proteomics; 2013 Feb; 13(3-4):526-37. PubMed ID: 23019148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.
    Oshikawa K; Matsumoto M; Oyamada K; Nakayama KI
    J Proteome Res; 2012 Feb; 11(2):796-807. PubMed ID: 22053931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of ubiquitylation site detection by Orbitrap mass spectrometry.
    van der Wal L; Bezstarosti K; Sap KA; Dekkers DHW; Rijkers E; Mientjes E; Elgersma Y; Demmers JAA
    J Proteomics; 2018 Feb; 172():49-56. PubMed ID: 29122726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of quantitative proteomics to the integrated analysis of the ubiquitylated and global proteomes of xenograft tumor tissues.
    Thomas SN; Zhang H; Cotter RJ
    Clin Proteomics; 2015; 12(1):14. PubMed ID: 26019700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances on Plant Ubiquitylome-From Mechanism to Application.
    He D; Damaris RN; Li M; Khan I; Yang P
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic and quantitative assessment of the ubiquitin-modified proteome.
    Kim W; Bennett EJ; Huttlin EL; Guo A; Li J; Possemato A; Sowa ME; Rad R; Rush J; Comb MJ; Harper JW; Gygi SP
    Mol Cell; 2011 Oct; 44(2):325-40. PubMed ID: 21906983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass Spectrometry-Based Proteomics for Investigating DNA Damage-Associated Protein Ubiquitylation.
    Heidelberger JB; Wagner SA; Beli P
    Front Genet; 2016; 7():109. PubMed ID: 27379159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites.
    Chen X; Qiu JD; Shi SP; Suo SB; Huang SY; Liang RP
    Bioinformatics; 2013 Jul; 29(13):1614-22. PubMed ID: 23626001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A versatile new tool derived from a bacterial deubiquitylase to detect and purify ubiquitylated substrates and their interacting proteins.
    Zhang M; Berk JM; Mehrtash AB; Kanyo J; Hochstrasser M
    PLoS Biol; 2022 Jun; 20(6):e3001501. PubMed ID: 35771886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in characterizing ubiquitylation sites by mass spectrometry.
    Sylvestersen KB; Young C; Nielsen ML
    Curr Opin Chem Biol; 2013 Feb; 17(1):49-58. PubMed ID: 23298953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.