BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33017668)

  • 21. Alternatively spliced isoforms of WT1 control podocyte-specific gene expression.
    Lefebvre J; Clarkson M; Massa F; Bradford ST; Charlet A; Buske F; Lacas-Gervais S; Schulz H; Gimpel C; Hata Y; Schaefer F; Schedl A
    Kidney Int; 2015 Aug; 88(2):321-31. PubMed ID: 25993318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of vascular endothelial growth factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms: a novel therapeutic strategy for angiogenesis.
    Nowak DG; Amin EM; Rennel ES; Hoareau-Aveilla C; Gammons M; Damodoran G; Hagiwara M; Harper SJ; Woolard J; Ladomery MR; Bates DO
    J Biol Chem; 2010 Feb; 285(8):5532-40. PubMed ID: 19906640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Wilms tumour suppressor protein WT1 (+KTS isoform) binds alpha-actinin 1 mRNA via its zinc-finger domain.
    Morrison AA; Venables JP; Dellaire G; Ladomery MR
    Biochem Cell Biol; 2006 Oct; 84(5):789-98. PubMed ID: 17167543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. WT1-mediated repression of the proapoptotic transcription factor ZNF224 is triggered by the BCR-ABL oncogene.
    Montano G; Vidovic K; Palladino C; Cesaro E; Sodaro G; Quintarelli C; De Angelis B; Errichiello S; Pane F; Izzo P; Grosso M; Gullberg U; Costanzo P
    Oncotarget; 2015 Sep; 6(29):28223-37. PubMed ID: 26320177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wilms' tumor gene 1 protein represses the expression of the tumor suppressor interferon regulatory factor 8 in human hematopoietic progenitors and in leukemic cells.
    Vidovic K; Svensson E; Nilsson B; Thuresson B; Olofsson T; Lennartsson A; Gullberg U
    Leukemia; 2010 May; 24(5):992-1000. PubMed ID: 20237505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Wilms' tumor gene (WT1) regulates E-cadherin expression and migration of prostate cancer cells.
    Brett A; Pandey S; Fraizer G
    Mol Cancer; 2013 Jan; 12():3. PubMed ID: 23298185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impaired glomerular maturation and lack of VEGF165b in Denys-Drash syndrome.
    Schumacher VA; Jeruschke S; Eitner F; Becker JU; Pitschke G; Ince Y; Miner JH; Leuschner I; Engers R; Everding AS; Bulla M; Royer-Pokora B
    J Am Soc Nephrol; 2007 Mar; 18(3):719-29. PubMed ID: 17267748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SRPK1 inhibition in vivo: modulation of VEGF splicing and potential treatment for multiple diseases.
    Oltean S; Gammons M; Hulse R; Hamdollah-Zadeh M; Mavrou A; Donaldson L; Salmon AH; Harper SJ; Ladomery MR; Bates DO
    Biochem Soc Trans; 2012 Aug; 40(4):831-5. PubMed ID: 22817743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of WT1-ZNF224 interaction in the expression of apoptosis-regulating genes.
    Montano G; Cesaro E; Fattore L; Vidovic K; Palladino C; Crescitelli R; Izzo P; Turco MC; Costanzo P
    Hum Mol Genet; 2013 May; 22(9):1771-82. PubMed ID: 23362234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternative splicing of SLC39A14 in colorectal cancer is regulated by the Wnt pathway.
    Thorsen K; Mansilla F; Schepeler T; Øster B; Rasmussen MH; Dyrskjøt L; Karni R; Akerman M; Krainer AR; Laurberg S; Andersen CL; Ørntoft TF
    Mol Cell Proteomics; 2011 Jan; 10(1):M110.002998. PubMed ID: 20938052
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classification of a frameshift/extended and a stop mutation in WT1 as gain-of-function mutations that activate cell cycle genes and promote Wilms tumour cell proliferation.
    Busch M; Schwindt H; Brandt A; Beier M; Görldt N; Romaniuk P; Toska E; Roberts S; Royer HD; Royer-Pokora B
    Hum Mol Genet; 2014 Aug; 23(15):3958-74. PubMed ID: 24619359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A splice variant of the Wilms' tumour suppressor Wt1 is required for normal development of the olfactory system.
    Wagner N; Wagner KD; Hammes A; Kirschner KM; Vidal VP; Schedl A; Scholz H
    Development; 2005 Mar; 132(6):1327-36. PubMed ID: 15716344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of Potent, Selective SRPK1 Inhibitors as Potential Topical Therapeutics for Neovascular Eye Disease.
    Batson J; Toop HD; Redondo C; Babaei-Jadidi R; Chaikuad A; Wearmouth SF; Gibbons B; Allen C; Tallant C; Zhang J; Du C; Hancox JC; Hawtrey T; Da Rocha J; Griffith R; Knapp S; Bates DO; Morris JC
    ACS Chem Biol; 2017 Mar; 12(3):825-832. PubMed ID: 28135068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting alternative splicing as a new cancer immunotherapy-phosphorylation of serine arginine-rich splicing factor (SRSF1) by SR protein kinase 1 (SRPK1) regulates alternative splicing of PD1 to generate a soluble antagonistic isoform that prevents T cell exhaustion.
    Wahid M; Pratoomthai B; Egbuniwe IU; Evans HR; Babaei-Jadidi R; Amartey JO; Erdelyi V; Yacqub-Usman K; Jackson AM; Morris JC; Patel PM; Bates DO
    Cancer Immunol Immunother; 2023 Dec; 72(12):4001-4014. PubMed ID: 37973660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolutionary conservation of zinc finger transcription factor binding sites in promoters of genes co-expressed with WT1 in prostate cancer.
    Eisermann K; Tandon S; Bazarov A; Brett A; Fraizer G; Piontkivska H
    BMC Genomics; 2008 Jul; 9():337. PubMed ID: 18631392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Inhibitory effect of WT1 gene isoform transfection on proliferation of leukemia cell line NB4].
    Shen HL; Chen ZX; Wang W; Cen JN; Hu SY; Zhao Y
    Ai Zheng; 2006 Feb; 25(2):163-9. PubMed ID: 16480579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA and RNA binding by the Wilms' tumour gene 1 (WT1) protein +KTS and -KTS isoforms-From initial observations to recent global genomic analyses.
    Ullmark T; Montano G; Gullberg U
    Eur J Haematol; 2018 Mar; 100(3):229-240. PubMed ID: 29240258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transactivation of the WT1 antisense promoter is unique to the WT1[+/-] isoform.
    Moorwood K; Salpekar A; Ivins SM; Hall J; Powlesland RM; Brown KW; Malik K
    FEBS Lett; 1999 Jul; 456(1):131-6. PubMed ID: 10452544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of serine/arginine-rich protein kinase-1 (SRPK1) prevents cholangiocarcinoma cells induced angiogenesis.
    Supradit K; Boonsri B; Duangdara J; Thitiphatphuvanon T; Suriyonplengsaeng C; Kangsamaksin T; Janvilisri T; Tohtong R; Yacqub-Usman K; Grabowska AM; Bates DO; Wongprasert K
    Toxicol In Vitro; 2022 Aug; 82():105385. PubMed ID: 35568131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SRPK1‑siRNA suppresses K562 cell growth and induces apoptosis via the PARP‑caspase3 pathway.
    Wang H; Ge W; Jiang W; Li D; Ju X
    Mol Med Rep; 2018 Jan; 17(1):2070-2076. PubMed ID: 29138847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.