These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33017807)

  • 1. Magnetite nanoparticle anchored graphene cathode enhances microbial electrosynthesis of polyhydroxybutyrate by Rhodopseudomonas palustris TIE-1.
    Rengasamy K; Ranaivoarisoa T; Bai W; Bose A
    Nanotechnology; 2021 Jan; 32(3):035103. PubMed ID: 33017807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper ferrite supported reduced graphene oxide as cathode materials to enhance microbial electrosynthesis of volatile fatty acids from CO
    Thatikayala D; Min B
    Sci Total Environ; 2021 May; 768():144477. PubMed ID: 33736314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An insoluble iron complex coated cathode enhances direct electron uptake by Rhodopseudomonas palustris TIE-1.
    Rengasamy K; Ranaivoarisoa T; Singh R; Bose A
    Bioelectrochemistry; 2018 Aug; 122():164-173. PubMed ID: 29655035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO
    Aryal N; Halder A; Zhang M; Whelan PR; Tremblay PL; Chi Q; Zhang T
    Sci Rep; 2017 Aug; 7(1):9107. PubMed ID: 28831188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced graphene oxide decorated with magnetite nanoparticles enhance biomethane enrichment.
    Covarrubias-García I; Quijano G; Aizpuru A; Sánchez-García JL; Rodríguez-López JL; Arriaga S
    J Hazard Mater; 2020 Oct; 397():122760. PubMed ID: 32387830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode.
    Aryal N; Wan L; Overgaard MH; Stoot AC; Chen Y; Tremblay PL; Zhang T
    Bioelectrochemistry; 2019 Aug; 128():83-93. PubMed ID: 30959398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards sustainable bioplastic production using the photoautotrophic bacterium Rhodopseudomonas palustris TIE-1.
    Ranaivoarisoa TO; Singh R; Rengasamy K; Guzman MS; Bose A
    J Ind Microbiol Biotechnol; 2019 Oct; 46(9-10):1401-1417. PubMed ID: 30927110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mo
    Tian S; Wang H; Dong Z; Yang Y; Yuan H; Huang Q; Song TS; Xie J
    Biotechnol Biofuels; 2019; 12():71. PubMed ID: 30976321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perovskite-Based Multifunctional Cathode with Simultaneous Supplementation of Substrates and Electrons for Enhanced Microbial Electrosynthesis of Organics.
    Tian S; He J; Huang H; Song TS; Wu X; Xie J; Zhou W
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30449-30456. PubMed ID: 32558536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced cathode performance of a rGO-V
    Mahalingam S; Ayyaru S; Ahn YH
    Dalton Trans; 2018 Nov; 47(46):16777-16788. PubMed ID: 30427338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced product selectivity in the microbial electrosynthesis of butyrate using a nickel ferrite-coated biocathode.
    Tahir K; Miran W; Jang J; Woo SH; Lee DS
    Environ Res; 2021 May; 196():110907. PubMed ID: 33639146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of microbial electrosynthesis system in CO
    Ibrahim I; Salehmin MNI; Balachandran K; Hil Me MF; Loh KS; Abu Bakar MH; Jong BC; Lim SS
    Front Microbiol; 2023; 14():1192187. PubMed ID: 37520357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H
    Bian Y; Leininger A; May HD; Ren ZJ
    Environ Sci Ecotechnol; 2024 May; 19():100324. PubMed ID: 37961049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata.
    Bajracharya S; Krige A; Matsakas L; Rova U; Christakopoulos P
    Chemosphere; 2022 Jan; 287(Pt 3):132188. PubMed ID: 34543900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced catalytic degradation by using RGO-Ce/WO
    Mi X; Han J; Sun Y; Li Y; Hu W; Zhan S
    J Hazard Mater; 2019 Apr; 367():365-374. PubMed ID: 30609402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial electrosynthesis: carbonaceous electrode materials for CO
    Lekshmi GS; Bazaka K; Ramakrishna S; Kumaravel V
    Mater Horiz; 2023 Feb; 10(2):292-312. PubMed ID: 36524420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High efficiency microbial electrosynthesis of acetate from carbon dioxide by a self-assembled electroactive biofilm.
    Song TS; Zhang H; Liu H; Zhang D; Wang H; Yang Y; Yuan H; Xie J
    Bioresour Technol; 2017 Nov; 243():573-582. PubMed ID: 28704738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A short review of graphene in the microbial electrosynthesis of biochemicals from carbon dioxide.
    Chen LF; Yu H; Zhang J; Qin HY
    RSC Adv; 2022 Aug; 12(35):22770-22782. PubMed ID: 36105988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of salt-tolerant CO
    Alqahtani MF; Bajracharya S; Katuri KP; Ali M; Xu J; Alarawi MS; Saikaly PE
    Sci Total Environ; 2021 Apr; 766():142668. PubMed ID: 33077225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiome for the Electrosynthesis of Chemicals from Carbon Dioxide.
    LaBelle EV; Marshall CW; May HD
    Acc Chem Res; 2020 Jan; 53(1):62-71. PubMed ID: 31809012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.