These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33017919)

  • 1. Regularized Estimation of Effective Scatterer Size and Acoustic Concentration Quantitative Ultrasound Parameters Using Dynamic Programming
    Jafarpisheh N; Rosado-Mendez IM; Hall TJ; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():13-16. PubMed ID: 33017919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytic Global Regularized Backscatter Quantitative Ultrasound.
    Jafarpisheh N; Hall TJ; Rivaz H; Rosado-Mendez IM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1605-1617. PubMed ID: 33284753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of total attenuation and scatterer size from backscattered ultrasound waveforms.
    Bigelow TA; Oelze ML; O'Brien WD
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1431-9. PubMed ID: 15807030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative assessment of in vivo breast masses using ultrasound attenuation and backscatter.
    Nam K; Zagzebski JA; Hall TJ
    Ultrason Imaging; 2013 Apr; 35(2):146-61. PubMed ID: 23493613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low Variance Estimation of Backscatter Quantitative Ultrasound Parameters Using Dynamic Programming.
    Vajihi Z; Rosado-Mendez IM; Hall TJ; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2042-2053. PubMed ID: 30222558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scatterer size estimation in pulse-echo ultrasound using focused sources: theoretical approximations and simulation analysis.
    Bigelow TA; O'Brien WD
    J Acoust Soc Am; 2004 Jul; 116(1):578-93. PubMed ID: 15296018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative ultrasound characterization of locally advanced breast cancer by estimation of its scatterer properties.
    Tadayyon H; Sadeghi-Naini A; Wirtzfeld L; Wright FC; Czarnota G
    Med Phys; 2014 Jan; 41(1):012903. PubMed ID: 24387530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging.
    Oelze ML; O'Brien WD; Blue JP; Zachary JF
    IEEE Trans Med Imaging; 2004 Jun; 23(6):764-71. PubMed ID: 15191150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations.
    Liu W; Zagzebski JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):340-52. PubMed ID: 20178900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Scatterer Number Density Segmentation of Ultrasound Images.
    Tehrani AKZ; Rosado-Mendez IM; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1169-1180. PubMed ID: 35044911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially Variant Ultrasound Attenuation Mapping Using a Regularized Linear Least-Squares Approach.
    Birdi J; D'hooge J; Bertrand A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 May; 69(5):1596-1609. PubMed ID: 35263252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel power spectrum calculation method using phase-compensation and weighted averaging for the estimation of ultrasound attenuation.
    Heo SW; Kim H
    Ultrasonics; 2010 May; 50(6):592-9. PubMed ID: 20083291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of tissue microstructure using ultrasonic backscatter: theory and technique for optimization using a Gaussian form factor.
    Oelze ML; Zachary JF; O'Brien WD
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1202-11. PubMed ID: 12243165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying ultrasonic scattering sites from three-dimensional impedance maps.
    Mamou J; Oelze ML; O'Brien WD; Zachary JF
    J Acoust Soc Am; 2005 Jan; 117(1):413-23. PubMed ID: 15704434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved diagnostics through quantitative ultrasound imaging.
    Hruska DP; Sanchez J; Oelze ML
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1956-9. PubMed ID: 19964021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-enabled quantitative ultrasound techniques for tissue differentiation.
    Thomson H; Yang S; Cochran S
    J Med Ultrason (2001); 2022 Oct; 49(4):517-528. PubMed ID: 35840774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamic ultrasound simulation of a pulsating three-layered CCA for validation of two-dimensional wall motion and blood velocity estimation algorithms.
    Hu X; Zhang Y; Cai G; Zhang K; Deng L; Gao L; Han S; Chen J
    Med Phys; 2018 Jan; 45(1):131-143. PubMed ID: 29148586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive Evaluation of Breast Tumor Response to Combined Ultrasound-Stimulated Microbubbles and Hyperthermia Therapy Using Quantitative Ultrasound-Based Texture Analysis Method.
    Sharma D; Sannachi L; Osapoetra LO; Cartar H; Cui W; Giles A; Czarnota GJ
    J Ultrasound Med; 2024 Jan; 43(1):137-150. PubMed ID: 37873733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel coded excitation scheme to improve spatial and contrast resolution of quantitative ultrasound imaging.
    Sanchez JR; Pocci D; Oelze ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2111-23. PubMed ID: 19942499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of scatterer size from backscattered ultrasound: a simulation study.
    Romijn RL; Thijssen JM; van Beuningen GJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(6):593-606. PubMed ID: 18290239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.