These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33017940)

  • 21. TinySleepNet: An Efficient Deep Learning Model for Sleep Stage Scoring based on Raw Single-Channel EEG.
    Supratak A; Guo Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():641-644. PubMed ID: 33018069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep Learning Enabled Automatic Abnormal EEG Identification.
    Roy S; Kiral-Kornek I; Harrer S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2756-2759. PubMed ID: 30440972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. STQS: Interpretable multi-modal Spatial-Temporal-seQuential model for automatic Sleep scoring.
    Pathak S; Lu C; Nagaraj SB; van Putten M; Seifert C
    Artif Intell Med; 2021 Apr; 114():102038. PubMed ID: 33875157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporal dependency in automatic sleep scoring via deep learning based architectures: An empirical study.
    Fiorillo L; Wand M; Marino I; Favaro P; Faraci FD
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3509-3512. PubMed ID: 33018760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing transfer performance across datasets for brain-computer interfaces using a combination of alignment strategies and adaptive batch normalization.
    Xu L; Xu M; Ma Z; Wang K; Jung TP; Ming D
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34407522
    [No Abstract]   [Full Text] [Related]  

  • 26. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.
    Supratak A; Dong H; Wu C; Guo Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):1998-2008. PubMed ID: 28678710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of deep transfer learning algorithms and transferability measures for wearable sleep staging.
    Waters SH; Clifford GD
    Biomed Eng Online; 2022 Sep; 21(1):66. PubMed ID: 36096868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of Deep Learning in Neuroradiology: Brain Haemorrhage Classification Using Transfer Learning.
    Dawud AM; Yurtkan K; Oztoprak H
    Comput Intell Neurosci; 2019; 2019():4629859. PubMed ID: 31281335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved A-phase Detection of Cyclic Alternating Pattern Using Deep Learning.
    Hartmann S; Baumert M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1842-1845. PubMed ID: 31946256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Deep Learning Model for Automated Sleep Stages Classification Using PSG Signals.
    Yildirim O; Baloglu UB; Acharya UR
    Int J Environ Res Public Health; 2019 Feb; 16(4):. PubMed ID: 30791379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep transfer learning for automated single-lead EEG sleep staging with channel and population mismatches.
    Van Der Aar JF; Van Den Ende DA; Fonseca P; Van Meulen FB; Overeem S; Van Gilst MM; Peri E
    Front Physiol; 2023; 14():1287342. PubMed ID: 38250654
    [No Abstract]   [Full Text] [Related]  

  • 32. Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database.
    Cha D; Pae C; Seong SB; Choi JY; Park HJ
    EBioMedicine; 2019 Jul; 45():606-614. PubMed ID: 31272902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recognition of words from brain-generated signals of speech-impaired people: Application of autoencoders as a neural Turing machine controller in deep neural networks.
    Boloukian B; Safi-Esfahani F
    Neural Netw; 2020 Jan; 121():186-207. PubMed ID: 31568896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving Transfer Performance of Deep Learning with Adaptive Batch Normalization for Brain-computer Interfaces
    Xu L; Ma Z; Meng J; Xu M; Jung TP; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5800-5803. PubMed ID: 34892438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep Convolutional Neural Network for Ulcer Recognition in Wireless Capsule Endoscopy: Experimental Feasibility and Optimization.
    Wang S; Xing Y; Zhang L; Gao H; Zhang H
    Comput Math Methods Med; 2019; 2019():7546215. PubMed ID: 31641370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep neural networks for human microRNA precursor detection.
    Zheng X; Fu X; Wang K; Wang M
    BMC Bioinformatics; 2020 Jan; 21(1):17. PubMed ID: 31931701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel deep neural network based pattern field classification architectures.
    Huang K; Zhang S; Zhang R; Hussain A
    Neural Netw; 2020 Jul; 127():82-95. PubMed ID: 32344155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards Deeper Neural Networks for Neonatal Seizure Detection.
    Daly A; O'Shea A; Lightbody G; Temko A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():920-923. PubMed ID: 34891440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of Machine Learning and Deep Learning Approaches for Detection of Mild Traumatic Brain Injury from Human Sleep Electroencephalogram.
    Vishwanath M; Jafarlou S; Shin I; Dutt N; Rahmani AM; Jones CE; Lim MM; Cao H
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6134-6137. PubMed ID: 34892516
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying depression in the National Health and Nutrition Examination Survey data using a deep learning algorithm.
    Oh J; Yun K; Maoz U; Kim TS; Chae JH
    J Affect Disord; 2019 Oct; 257():623-631. PubMed ID: 31357159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.