These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33017999)

  • 1. RPnet: A Deep Learning approach for robust R Peak detection in noisy ECG.
    Vijayarangan S; R V; Murugesan B; Sp P; Joseph J; Sivaprakasam M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():345-348. PubMed ID: 33017999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust R-Peak Detection in Low-Quality Holter ECGs Using 1D Convolutional Neural Network.
    Zahid MU; Kiranyaz S; Ince T; Devecioglu OC; Chowdhury MEH; Khandakar A; Tahir A; Gabbouj M
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):119-128. PubMed ID: 34110986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise Detection in Electrocardiography Signal for Robust Heart Rate Variability Analysis: A Deep Learning Approach.
    Ansari S; Gryak J; Najarian K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5632-5635. PubMed ID: 30441613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust heartbeat detection using multimodal recordings and ECG quality assessment with signal amplitudes dispersion.
    Khavas ZR; Asl BM
    Comput Methods Programs Biomed; 2018 Sep; 163():169-182. PubMed ID: 30119851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heart beat detection using a multimodal data coupling method.
    Mollakazemi MJ; Atyabi SA; Ghaffari A
    Physiol Meas; 2015 Aug; 36(8):1729-42. PubMed ID: 26218667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustness of Deep Learning models in electrocardiogram noise detection and classification.
    Rahman S; Pal S; Yearwood J; Karmakar C
    Comput Methods Programs Biomed; 2024 Aug; 253():108249. PubMed ID: 38815528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SEResUTer: a deep learning approach for accurate ECG signal delineation and atrial fibrillation detection.
    Li X; Cai W; Xu B; Jiang Y; Qi M; Wang M
    Physiol Meas; 2023 Dec; 44(12):. PubMed ID: 37827168
    [No Abstract]   [Full Text] [Related]  

  • 8. Deep learning for comprehensive ECG annotation.
    Teplitzky BA; McRoberts M; Ghanbari H
    Heart Rhythm; 2020 May; 17(5 Pt B):881-888. PubMed ID: 32354454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ranking of the most reliable beat morphology and heart rate variability features for the detection of atrial fibrillation in short single-lead ECG.
    Christov I; Krasteva V; Simova I; Neycheva T; Schmid R
    Physiol Meas; 2018 Sep; 39(9):094005. PubMed ID: 30102603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction of foetal ECG from abdominal ECG by nonlinear transformation and estimations.
    John RG; Ramachandran KI
    Comput Methods Programs Biomed; 2019 Jul; 175():193-204. PubMed ID: 31104707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal heart beat detection using signal quality indices.
    Johnson AE; Behar J; Andreotti F; Clifford GD; Oster J
    Physiol Meas; 2015 Aug; 36(8):1665-77. PubMed ID: 26218060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning for digitizing highly noisy paper-based ECG records.
    Li Y; Qu Q; Wang M; Yu L; Wang J; Shen L; He K
    Comput Biol Med; 2020 Dec; 127():104077. PubMed ID: 33171291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel application of deep learning for single-lead ECG classification.
    Mathews SM; Kambhamettu C; Barner KE
    Comput Biol Med; 2018 Aug; 99():53-62. PubMed ID: 29886261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of HRV indices obtained from ECG and SCG signals from CEBS database.
    Siecinski S; Tkacz EJ; Kostka PS
    Biomed Eng Online; 2019 Jun; 18(1):69. PubMed ID: 31153383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion of detected multi-channel maternal electrocardiogram (ECG) R-wave peak locations.
    Yu Q; Guan Q; Li P; Liu TB; Huang XL; Zhao Y; Liu HX; Wang YQ
    Biomed Eng Online; 2016 Jan; 15(1):4. PubMed ID: 26758885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep ECGNet: An Optimal Deep Learning Framework for Monitoring Mental Stress Using Ultra Short-Term ECG Signals.
    Hwang B; You J; Vaessen T; Myin-Germeys I; Park C; Zhang BT
    Telemed J E Health; 2018 Oct; 24(10):753-772. PubMed ID: 29420125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning Based Patient-Specific Classification of Arrhythmia on ECG signal.
    Zhao W; Hu J; Jia D; Wang H; Li Z; Yan C; You T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1500-1503. PubMed ID: 31946178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Deep-Match Framework: R-Peak Detection in Ear-ECG.
    Davies HJ; Hammour G; Zylinski M; Nassibi A; Stankovic L; Mandic DP
    IEEE Trans Biomed Eng; 2024 Jul; 71(7):2014-2021. PubMed ID: 38285581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Deep Learning Architecture Using 3D Vectorcardiogram to Detect R-Peaks in ECG with Enhanced Precision.
    Mehri M; Calmon G; Odille F; Oster J
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heart beat detection in multimodal data using automatic relevant signal detection.
    De Cooman T; Goovaerts G; Varon C; Widjaja D; Willemen T; Van Huffel S
    Physiol Meas; 2015 Aug; 36(8):1691-704. PubMed ID: 26218307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.