BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33018054)

  • 1. Emotion assessment using Machine Learning and low-cost wearable devices.
    Laureanti R; Bilucaglia M; Zito M; Circi R; Fici A; Rivetti F; Valesi R; Oldrini C; Mainardi LT; Russo V
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():576-579. PubMed ID: 33018054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding auditory-evoked response in affective states using wearable around-ear EEG system.
    Choi J; Kaongoen N; Choi H; Kim M; Kim BH; Jo S
    Biomed Phys Eng Express; 2023 Aug; 9(5):. PubMed ID: 37591224
    [No Abstract]   [Full Text] [Related]  

  • 3. A Comparative Study of Arousal and Valence Dimensional Variations for Emotion Recognition Using Peripheral Physiological Signals Acquired from Wearable Sensors
    Alskafi FA; Khandoker AH; Jelinek HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1104-1107. PubMed ID: 34891480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online Learning for Wearable EEG-Based Emotion Classification.
    Moontaha S; Schumann FEF; Arnrich B
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosignal-Based Multimodal Emotion Recognition in a Valence-Arousal Affective Framework Applied to Immersive Video Visualization.
    Pinto J; Fred A; da Silva HP
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3577-3583. PubMed ID: 31946651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors.
    Marín-Morales J; Higuera-Trujillo JL; Greco A; Guixeres J; Llinares C; Scilingo EP; Alcañiz M; Valenza G
    Sci Rep; 2018 Sep; 8(1):13657. PubMed ID: 30209261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CorrNet: Fine-Grained Emotion Recognition for Video Watching Using Wearable Physiological Sensors.
    Zhang T; El Ali A; Wang C; Hanjalic A; Cesar P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Wearable EEG Devices Specialized for Passive Brain-Computer Interface Applications.
    Park S; Han CH; Im CH
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emotional valence sensing using a wearable facial EMG device.
    Sato W; Murata K; Uraoka Y; Shibata K; Yoshikawa S; Furuta M
    Sci Rep; 2021 Mar; 11(1):5757. PubMed ID: 33707605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Wearable In-Ear EEG Device for Emotion Monitoring.
    Athavipach C; Pan-Ngum S; Israsena P
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31533329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emotion recognition from single-trial EEG based on kernel Fisher's emotion pattern and imbalanced quasiconformal kernel support vector machine.
    Liu YH; Wu CT; Cheng WT; Hsiao YT; Chen PM; Teng JT
    Sensors (Basel); 2014 Jul; 14(8):13361-88. PubMed ID: 25061837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing Wearable Devices for Emotional Intelligence: Therapeutic Applications in Digital Health.
    Arabian H; Abdulbaki Alshirbaji T; Schmid R; Wagner-Hartl V; Chase JG; Moeller K
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.
    Kim HC; Bandettini PA; Lee JH
    Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arousal-Valence Classification from Peripheral Physiological Signals Using Long Short-Term Memory Networks.
    Zitouni MS; Park CY; Lee U; Hadjileontiadis L; Khandoker A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():686-689. PubMed ID: 34891385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential impact of emotionally loaded stimuli on over/under-estimating neutral situations among power plant control-room operators.
    Ghanbari Z; Nami M; Choobineh A; Zakerian SA; Gharagozlou F; Kamali AM; Kazemiha M
    Work; 2023; 76(4):1385-1394. PubMed ID: 37393464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Different Feature Extraction Methods for Discriminating Expressed Emotions during Music Performance towards BCMI Application.
    Ghodousi M; Pousson JE; Bernhofs V; Griškova-Bulanova I
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Affective Interaction System using Virtual Reality and Brain-Computer Interface.
    Chin ZY; Zhang Z; Wang C; Ang KK
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6183-6186. PubMed ID: 34892528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coverage of Emotion Recognition for Common Wearable Biosensors.
    Hui TKL; Sherratt RS
    Biosensors (Basel); 2018 Mar; 8(2):. PubMed ID: 29587375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Emotion with Biosignals: A Comparison of Classification and Regression Models for Estimating Valence and Arousal Level Using Wearable Sensors.
    Siirtola P; Tamminen S; Chandra G; Ihalapathirana A; Röning J
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emotion Recognition for Brain Machine Interface: Non-linear Spectral Analysis of EEG Signals Using Empirical Mode Decomposition.
    Carella T; De Silvestri M; Finedore M; Haniff I; Esmailbeigi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():223-226. PubMed ID: 30440378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.