BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33018171)

  • 1. A novel Graph Attention Network Architecture for modeling multimodal brain connectivity.
    Filip AC; Azevedo T; Passamonti L; Toschi N; Lio P
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1071-1074. PubMed ID: 33018171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep spatiotemporal graph learning architecture for brain connectivity analysis.
    Azevedo T; Passamonti L; Lio P; Toschi N
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1120-1123. PubMed ID: 33018183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain multigraph prediction using topology-aware adversarial graph neural network.
    Bessadok A; Mahjoub MA; Rekik I
    Med Image Anal; 2021 Aug; 72():102090. PubMed ID: 34004494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data.
    Azevedo T; Campbell A; Romero-Garcia R; Passamonti L; Bethlehem RAI; Liò P; Toschi N
    Med Image Anal; 2022 Jul; 79():102471. PubMed ID: 35580429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NBS-Predict: A prediction-based extension of the network-based statistic.
    Serin E; Zalesky A; Matory A; Walter H; Kruschwitz JD
    Neuroimage; 2021 Dec; 244():118625. PubMed ID: 34610435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations.
    D'Souza NS; Nebel MB; Crocetti D; Robinson J; Wymbs N; Mostofsky SH; Venkataraman A
    Neuroimage; 2021 Nov; 241():118388. PubMed ID: 34271159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning models of cognitive processes constrained by human brain connectomes.
    Zhang Y; Farrugia N; Bellec P
    Med Image Anal; 2022 Aug; 80():102507. PubMed ID: 35738052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure can predict function in the human brain: a graph neural network deep learning model of functional connectivity and centrality based on structural connectivity.
    Neudorf J; Kress S; Borowsky R
    Brain Struct Funct; 2022 Jan; 227(1):331-343. PubMed ID: 34633514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BrainSTEAM: A Practical Pipeline for Connectome-based fMRI Analysis towards Subject Classification.
    Li A; Yang Y; Cui H; Yang C
    Pac Symp Biocomput; 2024; 29():53-64. PubMed ID: 38160269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Deep Learning Model for Task-Evoked fMRI Data Classification.
    Huang X; Xiao J; Wu C
    Comput Intell Neurosci; 2021; 2021():6660866. PubMed ID: 34422034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph Fourier transform of fMRI temporal signals based on an averaged structural connectome for the classification of neuroimaging.
    Brahim A; Farrugia N
    Artif Intell Med; 2020 Jun; 106():101870. PubMed ID: 32593395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal Brain Connectomics-Based Prediction of Parkinson's Disease Using Graph Attention Networks.
    Safai A; Vakharia N; Prasad S; Saini J; Shah A; Lenka A; Pal PK; Ingalhalikar M
    Front Neurosci; 2021; 15():741489. PubMed ID: 35280342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain graph super-resolution using adversarial graph neural network with application to functional brain connectivity.
    Isallari M; Rekik I
    Med Image Anal; 2021 Jul; 71():102084. PubMed ID: 33971574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Hierarchical Brain Networks via Volumetric Sparse Deep Belief Network.
    Dong Q; Ge F; Ning Q; Zhao Y; Lv J; Huang H; Yuan J; Jiang X; Shen D; Liu T
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1739-1748. PubMed ID: 31647417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced structural connectivity within a brain sub-network supporting working memory and engagement processes after cognitive training.
    Román FJ; Iturria-Medina Y; Martínez K; Karama S; Burgaleta M; Evans AC; Jaeggi SM; Colom R
    Neurobiol Learn Mem; 2017 May; 141():33-43. PubMed ID: 28323202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets.
    Yoo K; Rosenberg MD; Hsu WT; Zhang S; Li CR; Scheinost D; Constable RT; Chun MM
    Neuroimage; 2018 Feb; 167():11-22. PubMed ID: 29122720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BrainTGL: A dynamic graph representation learning model for brain network analysis.
    Liu L; Wen G; Cao P; Hong T; Yang J; Zhang X; Zaiane OR
    Comput Biol Med; 2023 Feb; 153():106521. PubMed ID: 36630830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis.
    Li X; Zhou Y; Dvornek N; Zhang M; Gao S; Zhuang J; Scheinost D; Staib LH; Ventola P; Duncan JS
    Med Image Anal; 2021 Dec; 74():102233. PubMed ID: 34655865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Connectome Graphs Based on Boundary Scale.
    Moron-Fernández MJ; Amedeo LM; Monterroso Muñoz A; Molina-Abril H; Díaz-Del-Río F; Bini F; Marinozzi F; Real P
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correspondence between evoked and intrinsic functional brain network configurations.
    Bolt T; Nomi JS; Rubinov M; Uddin LQ
    Hum Brain Mapp; 2017 Apr; 38(4):1992-2007. PubMed ID: 28052450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.