These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33018253)

  • 1. Supervised Machine Learning Segmentation and Quantification of Gastric Pacemaker Cells.
    Mah SA; Avci R; Du P; Vanderwinden JM; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1408-1411. PubMed ID: 33018253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antral Variation of Murine Gastric Pacemaker Cells Informed by Confocal Imaging and Machine Learning Methods.
    Mah SA; Avci R; Du P; Vanderwinden JM; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3105-3108. PubMed ID: 34891899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Regional Variations of the Interstitial Cells of Cajal in the Murine Distal Stomach Informed by Confocal Imaging and Machine Learning Methods.
    Mah SA; Du P; Avci R; Vanderwinden JM; Cheng LK
    Cell Mol Bioeng; 2022 Apr; 15(2):193-205. PubMed ID: 35401841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering Stomach Myoelectrical Slow Wave Conduction Patterns via Confocal Imaging of Gastric Pacemaker Cells and Fractal Geometry.
    Mah SA; Avci R; Du P; Vanderwinden JM; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3514-3517. PubMed ID: 36085915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xiangbinfang granules enhance gastric antrum motility
    Chen QC; Jiang Z; Zhang JH; Cao LX; Chen ZQ
    World J Gastroenterol; 2021 Feb; 27(7):576-591. PubMed ID: 33642830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A framework for simulating gastric electrical propagation in confocal microscopy derived geometries.
    Krohn B; Sathar S; Rohrle O; Vanderwinden JM; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4215-4218. PubMed ID: 29060827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Fractal Analysis of the Interstitial Cells of Cajal Networks of Gastrointestinal Tissue Specimens.
    Mah SA; Avci R; Vanderwinden JM; Du P
    Cell Mol Bioeng; 2024 Feb; 17(1):67-81. PubMed ID: 38435795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of electrical pacemaking by interstitial cells of Cajal and gastric dysrhythmias in W/W mutant mice.
    Ordög T; Baldo M; Danko R; Sanders KM
    Gastroenterology; 2002 Dec; 123(6):2028-40. PubMed ID: 12454859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of pacemaker function through the tunica muscularis of the canine gastric antrum.
    Horiguchi K; Semple GS; Sanders KM; Ward SM
    J Physiol; 2001 Nov; 537(Pt 1):237-50. PubMed ID: 11711577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The functional role of intramuscular interstitial cells of Cajal in the stomach.
    Kito Y
    J Smooth Muscle Res; 2011; 47(2):47-53. PubMed ID: 21757854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional variation in contribution of myenteric and intramuscular interstitial cells of Cajal to generation of slow waves in mouse gastric antrum.
    Hirst GD; Beckett EA; Sanders KM; Ward SM
    J Physiol; 2002 May; 540(Pt 3):1003-12. PubMed ID: 11986385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of electrical rhythmicity in the murine gastrointestinal tract is specifically encoded in the tunica muscularis.
    Ward SM; Harney SC; Bayguinov JR; McLaren GJ; Sanders KM
    J Physiol; 1997 Nov; 505 ( Pt 1)(Pt 1):241-58. PubMed ID: 9409486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential sensitivity of gastric and small intestinal muscles to inducible knockdown of anoctamin 1 and the effects on gastrointestinal motility.
    Hwang SJ; Pardo DM; Zheng H; Bayguinov Y; Blair PJ; Fortune-Grant R; Cook RS; Hennig GW; Shonnard MC; Grainger N; Peri LE; Verma SD; Rock J; Sanders KM; Ward SM
    J Physiol; 2019 May; 597(9):2337-2360. PubMed ID: 30843201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation of pacemaker activity in the guinea-pig antrum.
    Hennig GW; Hirst GD; Park KJ; Smith CB; Sanders KM; Ward SM; Smith TK
    J Physiol; 2004 Apr; 556(Pt 2):585-99. PubMed ID: 14754999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca
    Baker SA; Hwang SJ; Blair PJ; Sireika C; Wei L; Ro S; Ward SM; Sanders KM
    Cell Calcium; 2021 Nov; 99():102472. PubMed ID: 34537580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators.
    Wei R; Parsons SP; Huizinga JD
    Exp Physiol; 2017 Mar; 102(3):329-346. PubMed ID: 28036151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue specific simulations of interstitial cells of cajal networks using unstructured meshes.
    Sathar S; Trew ML; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():8062-5. PubMed ID: 26738164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrical analysis of slow wave propagation in the guinea-pig gastric antrum.
    Edwards FR; Hirst GD
    J Physiol; 2006 Feb; 571(Pt 1):179-89. PubMed ID: 16357016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias.
    O'Grady G; Du P; Paskaranandavadivel N; Angeli TR; Lammers WJ; Asirvatham SJ; Windsor JA; Farrugia G; Pullan AJ; Cheng LK
    Neurogastroenterol Motil; 2012 Jul; 24(7):e299-312. PubMed ID: 22709238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current applications of mathematical models of the interstitial cells of Cajal in the gastrointestinal tract.
    Mah SA; Avci R; Cheng LK; Du P
    WIREs Mech Dis; 2021 Mar; 13(2):e1507. PubMed ID: 33026190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.