BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33018306)

  • 1. Adipose Tissue Segmentation in Unlabeled Abdomen MRI using Cross Modality Domain Adaptation.
    Masoudi S; Anwar SM; Harmon SA; Choyke PL; Turkbey B; Bagci U
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1624-1628. PubMed ID: 33018306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets.
    Jiang J; Hu YC; Tyagi N; Zhang P; Rimner A; Deasy JO; Veeraraghavan H
    Med Phys; 2019 Oct; 46(10):4392-4404. PubMed ID: 31274206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CT-Based Pelvic T
    Kalantar R; Messiou C; Winfield JM; Renn A; Latifoltojar A; Downey K; Sohaib A; Lalondrelle S; Koh DM; Blackledge MD
    Front Oncol; 2021; 11():665807. PubMed ID: 34395244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming UTE-mDixon MR Abdomen-Pelvis Images Into CT by Jointly Leveraging Prior Knowledge and Partial Supervision.
    Qian P; Zheng J; Zheng Q; Liu Y; Wang T; Al Helo R; Baydoun A; Avril N; Ellis RJ; Friel H; Traughber MS; Devaraj A; Traughber B; Muzic RF
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):70-82. PubMed ID: 32175868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Effective CNN Method for Fully Automated Segmenting Subcutaneous and Visceral Adipose Tissue on CT Scans.
    Wang Z; Meng Y; Weng F; Chen Y; Lu F; Liu X; Hou M; Zhang J
    Ann Biomed Eng; 2020 Jan; 48(1):312-328. PubMed ID: 31451989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-derived organ attention for unpaired CT-MRI deep domain adaptation based MRI segmentation.
    Jiang J; Hu YC; Tyagi N; Wang C; Lee N; Deasy JO; Sean B; Veeraraghavan H
    Phys Med Biol; 2020 Oct; 65(20):205001. PubMed ID: 33027063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning Framework for Liver Segmentation from
    Hossain MSA; Gul S; Chowdhury MEH; Khan MS; Sumon MSI; Bhuiyan EH; Khandakar A; Hossain M; Sadique A; Al-Hashimi I; Ayari MA; Mahmud S; Alqahtani A
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated volume measurement of abdominal adipose tissue from entire abdominal cavity in Dixon MR images using deep learning.
    Takahashi M; Takenaga T; Nomura Y; Hanaoka S; Hayashi N; Nemoto M; Nakao T; Miki S; Yoshikawa T; Kobayashi T; Abe S
    Radiol Phys Technol; 2023 Mar; 16(1):28-38. PubMed ID: 36344662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abdominal synthetic CT generation from MR Dixon images using a U-net trained with 'semi-synthetic' CT data.
    Liu L; Johansson A; Cao Y; Dow J; Lawrence TS; Balter JM
    Phys Med Biol; 2020 Jun; 65(12):125001. PubMed ID: 32330923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensation cycle consistent generative adversarial networks (Comp-GAN) for synthetic CT generation from MR scans with truncated anatomy.
    Zhao Y; Wang H; Yu C; Court LE; Wang X; Wang Q; Pan T; Ding Y; Phan J; Yang J
    Med Phys; 2023 Jul; 50(7):4399-4414. PubMed ID: 36698291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A technique to generate synthetic CT from MRI for abdominal radiotherapy.
    Hsu SH; DuPre P; Peng Q; Tomé WA
    J Appl Clin Med Phys; 2020 Feb; 21(2):136-143. PubMed ID: 32043812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lumbar Spine Computed Tomography to Magnetic Resonance Imaging Synthesis Using Generative Adversarial Network: Visual Turing Test.
    Hong KT; Cho Y; Kang CH; Ahn KS; Lee H; Kim J; Hong SJ; Kim BH; Shim E
    Diagnostics (Basel); 2022 Feb; 12(2):. PubMed ID: 35204619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of CT and Dixon MR Abdominal Adipose Tissue Quantification Using a Unified Computer-Assisted Software Framework.
    Hsu LY; Ali Z; Bagheri H; Huda F; Redd BA; Jones EC
    Tomography; 2023 May; 9(3):1041-1051. PubMed ID: 37218945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer.
    Korhonen J; Kapanen M; Keyriläinen J; Seppälä T; Tenhunen M
    Med Phys; 2014 Jan; 41(1):011704. PubMed ID: 24387496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MMTLNet: Multi-Modality Transfer Learning Network with adversarial training for 3D whole heart segmentation.
    Liao X; Qian Y; Chen Y; Xiong X; Wang Q; Heng PA
    Comput Med Imaging Graph; 2020 Oct; 85():101785. PubMed ID: 32898732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks.
    Lei Y; Harms J; Wang T; Liu Y; Shu HK; Jani AB; Curran WJ; Mao H; Liu T; Yang X
    Med Phys; 2019 Aug; 46(8):3565-3581. PubMed ID: 31112304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment.
    Lee YS; Hong N; Witanto JN; Choi YR; Park J; Decazes P; Eude F; Kim CO; Chang Kim H; Goo JM; Rhee Y; Yoon SH
    Clin Nutr; 2021 Aug; 40(8):5038-5046. PubMed ID: 34365038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudo-CT generation from multi-parametric MRI using a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal carcinoma patients.
    Tie X; Lam SK; Zhang Y; Lee KH; Au KH; Cai J
    Med Phys; 2020 Apr; 47(4):1750-1762. PubMed ID: 32012292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.