These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3301833)

  • 41. Inhibition of Na+/Ca2+ exchanger activity in cardiac and skeletal muscle sarcolemmal vesicles by monoclonal antibody 44D7.
    Michalak M; Quackenbush EJ; Letarte M
    J Biol Chem; 1986 Jan; 261(1):92-5. PubMed ID: 2416754
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanisms of Ca2+ transport in plasma membrane vesicles prepared from cultured pituitary cells. II. (Ca2+ + Mg2+)-ATPase-dependent Ca2+ transport activity.
    Barros F; Kaczorowski GJ
    J Biol Chem; 1984 Aug; 259(15):9404-10. PubMed ID: 6146614
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solubilization and reconstitution of the Na+/Ca2+ exchanger of cardiac sarcolemma. Properties of the reconstituted system and tentative identification of the protein(s) responsible for the exchange activity.
    Soldati L; Longoni S; Carafoli E
    J Biol Chem; 1985 Oct; 260(24):13321-7. PubMed ID: 2997163
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In squid axons, ATP modulates Na+-Ca2+ exchange by a Ca2+i-dependent phosphorylation.
    DiPolo R; Beaugé L
    Biochim Biophys Acta; 1987 Mar; 897(3):347-54. PubMed ID: 3814592
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of Ca2+ channel blockers on Ca2+ translocation across synaptosomal membranes.
    Carvalho CA; Coutinho OP; Carvalho AP
    J Neurochem; 1986 Dec; 47(6):1774-84. PubMed ID: 2430061
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characteristics of Mg2+-dependent, ATP-activated Ca2+ transport in synaptic and microsomal membranes and in permeabilized synaptosomes.
    Michaelis ML; Kitos TE; Nunley EW; Lecluyse E; Michaelis EK
    J Biol Chem; 1987 Mar; 262(9):4182-9. PubMed ID: 2951384
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression of the cardiac Na(+)-Ca2+ exchanger in insect cells using a baculovirus vector.
    Li Z; Smith CD; Smolley JR; Bridge JH; Frank JS; Philipson KD
    J Biol Chem; 1992 Apr; 267(11):7828-33. PubMed ID: 1560015
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of plasma membrane oxidoreductases on Ca2+ mobilization and protein phosphorylation in rat brain synaptosomes.
    Bulliard C; Marmy N; Dreyer JL
    J Bioenerg Biomembr; 1990 Oct; 22(5):645-62. PubMed ID: 2249977
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stimulation of sodium-calcium exchange by cholesterol incorporation into isolated cardiac sarcolemmal vesicles.
    Kutryk MJ; Pierce GN
    J Biol Chem; 1988 Sep; 263(26):13167-72. PubMed ID: 2843512
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Immunological characterization and localization of the Na+/Ca2(+)-exchanger in bovine retina.
    Haase W; Friese W; Gordon RD; Müller H; Cook NJ
    J Neurosci; 1990 May; 10(5):1486-94. PubMed ID: 2185348
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Purification and immunological characterization of a calcium pump from bovine brain synaptosomal vesicles.
    Chan SY; Hess EJ; Rahamimoff H; Goldin SM
    J Neurosci; 1984 Jun; 4(6):1468-78. PubMed ID: 6726342
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Incorporation of Na+ - Ca2+ antiporter and of (Na+ + K+)-ATPase into liposomes and demonstration of their non-identity.
    Eckert K; Grosse R
    Biochim Biophys Acta; 1982 Oct; 692(1):69-80. PubMed ID: 6293560
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An electrogenic Na+/Ca2+ antiporter in addition to the Ca2+ pump in cardiac sarcolemma.
    Lamers JM; Stinis JT
    Biochim Biophys Acta; 1981 Jan; 640(2):521-34. PubMed ID: 7213903
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Some molecular properties of the synaptic plasma membrane Na(+)-Ca2+ exchanger.
    Michaelis ML; Walsh JL; Jayawickreme C; Schueler S; Hurlbert M
    Ann N Y Acad Sci; 1991; 639():250-2. PubMed ID: 1785852
    [No Abstract]   [Full Text] [Related]  

  • 55. Na+-Ca2+ exchange in the axolemma-rich membrane vesicle preparations from the walking-leg nerves of the American lobster.
    Peterson AA; Matsumura F; McGroarty EJ
    Biochim Biophys Acta; 1984 Mar; 771(1):53-8. PubMed ID: 6704389
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Na+/Ca2+ exchange in rat osteoblast-like UMR 106 cells.
    White KE; Gesek FA; Friedman PA
    J Bone Miner Res; 1996 Nov; 11(11):1666-75. PubMed ID: 8915774
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural and functional analysis of Na+/Ca2+ exchange in distal convoluted tubule cells.
    White KE; Gesek FA; Friedman PA
    Am J Physiol; 1996 Sep; 271(3 Pt 2):F560-70. PubMed ID: 8853417
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sarcolemmal Na+-Ca2+ exchange activity in hearts subjected to hypoxia reoxygenation.
    Dixon IM; Eyolfson DA; Dhalla NS
    Am J Physiol; 1987 Nov; 253(5 Pt 2):H1026-34. PubMed ID: 3688247
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ionic mechanisms for the transduction of acidic stimuli in rabbit carotid body glomus cells.
    Rocher A; Obeso A; Gonzalez C; Herreros B
    J Physiol; 1991 Feb; 433():533-48. PubMed ID: 1668755
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Immunologic localization and kinetic characterization of a Na+/Ca2+ exchanger in neuronal and non-neuronal cells.
    Michaelis ML; Walsh JL; Pal R; Hurlbert M; Hoel G; Bland K; Foye J; Kwong WH
    Brain Res; 1994 Oct; 661(1-2):104-16. PubMed ID: 7834362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.