BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33018347)

  • 1. MNP Enhanced Microwave Imaging by Means of Pseudo-Noise Sensing with Different External Magnetic Field Modulations.
    Ley S; Faenger B; Hilger I; Helbig M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1795-1798. PubMed ID: 33018347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MNP-Enhanced Microwave Medical Imaging by Means of Pseudo-Noise Sensing.
    Ley S; Sachs J; Faenger B; Hilger I; Helbig M
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Detection of Magnetic Nanoparticles Using a Novel Microwave Ferromagnetic Resonance Imaging System.
    Kaye C; Gilmore C; LoVetri J
    IEEE Trans Biomed Eng; 2021 Mar; 68(3):936-947. PubMed ID: 32845833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Characterization of Spurious Signals in Magnetic Nanoparticles Enhanced Microwave Imaging of Cancer.
    Bucci OM; Bellizzi G; Costanzo S; Crocco L; Di Massa G; Scapaticci R
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave imaging of breast cancer with factorization method: SPIONs as contrast agent.
    Coşğun S; Bilgin E; Çayören M
    Med Phys; 2020 Jul; 47(7):3113-3122. PubMed ID: 32202317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles.
    Jaufenthaler A; Kornack T; Lebedev V; Limes ME; Körber R; Liebl M; Baumgarten D
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33572285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave cancer imaging exploiting magnetic nanoparticles as contrast agent.
    Bellizzi G; Bucci OM; Catapano I
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2528-36. PubMed ID: 21642036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the Working Conditions for Magnetic Nanoparticle-Enhanced Microwave Diagnostics of Breast Cancer.
    Bellizzi G; Bellizzi GG; Bucci OM; Crocco L; Helbig M; Ley S; Sachs J
    IEEE Trans Biomed Eng; 2018 Jul; 65(7):1607-1616. PubMed ID: 28922111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-sized quantitative imaging of magnetic nanoparticles with nonlinear magnetorelaxometry.
    Schier P; Jaufenthaler A; Liebl M; Arsalani S; Wiekhorst F; Baumgarten D
    Phys Med Biol; 2023 Jul; 68(15):. PubMed ID: 37385264
    [No Abstract]   [Full Text] [Related]  

  • 10. An in vivo coil setup for AC magnetic field-mediated magnetic nanoparticle heating experiments.
    Miaskowski A; Balakrishnan P; Subramanian M; Hovorka O
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3991-3994. PubMed ID: 31946746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optomagnetic biosensors: Volumetric sensing based on magnetic actuation-induced optical modulations.
    Xiao X; Yuan C; Li T; Fock J; Svedlindh P; Tian B
    Biosens Bioelectron; 2022 Nov; 215():114560. PubMed ID: 35841765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency Mixing Magnetic Detection Setup Employing Permanent Ring Magnets as a Static Offset Field Source.
    Pourshahidi AM; Achtsnicht S; Offenhäusser A; Krause HJ
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted delivery of β-glucosidase-loaded magnetic nanoparticles: effect of external magnetic field duration and intensity.
    Zhou J; Hou J; Liu Y; Rao J
    Nanomedicine (Lond); 2020 Sep; 15(21):2029-2040. PubMed ID: 32885735
    [No Abstract]   [Full Text] [Related]  

  • 14. A Compressive Sensing Approach for 3D Breast Cancer Microwave Imaging With Magnetic Nanoparticles as Contrast Agent.
    Bevacqua MT; Scapaticci R
    IEEE Trans Med Imaging; 2016 Feb; 35(2):665-73. PubMed ID: 26469125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative imaging of magnetic nanoparticles by magnetorelaxometry with multiple excitation coils.
    Liebl M; Steinhoff U; Wiekhorst F; Haueisen J; Trahms L
    Phys Med Biol; 2014 Nov; 59(21):6607-20. PubMed ID: 25321617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental comparison of four nonlinear magnetic detection methods and considerations on clinical usability.
    van de Loosdrecht MM; Abelmann L; Ten Haken B
    Biomed Phys Eng Express; 2020 Dec; 7(1):. PubMed ID: 34037534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound-Induced Magnetic Imaging of Tumors Targeted by Biofunctional Magnetic Nanoparticles.
    Huang KW; Chieh JJ; Yeh CK; Liao SH; Lee YY; Hsiao PY; Wei WC; Yang HC; Horng HE
    ACS Nano; 2017 Mar; 11(3):3030-3037. PubMed ID: 28276684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields.
    Jeon S; Subbiah R; Bonaedy T; Van S; Park K; Yun K
    J Cell Physiol; 2018 Feb; 233(2):1168-1178. PubMed ID: 28464242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells.
    Spyridopoulou K; Makridis A; Maniotis N; Karypidou N; Myrovali E; Samaras T; Angelakeris M; Chlichlia K; Kalogirou O
    Nanotechnology; 2018 Apr; 29(17):175101. PubMed ID: 29498936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-Wideband Microwave Imaging System for Root Phenotyping.
    Shi X; Li J; Mukherjee S; Datta S; Rathod V; Wang X; Lu W; Udpa L; Deng Y
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.