BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33018403)

  • 1. Improving Ultrasound Lateral Strain Estimation Accuracy using Log Compression of Regularized Correlation Function.
    Mukaddim RA; Varghese T
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2031-2034. PubMed ID: 33018403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging.
    Al Mukaddim R; Meshram NH; Varghese T
    Phys Med Biol; 2020 Mar; 65(6):065008. PubMed ID: 32028272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel tissue mechanics-based method for improved motion tracking in quasi-static ultrasound elastography.
    Kheirkhah N; Dempsey S; Sadeghi-Naini A; Samani A
    Med Phys; 2023 Apr; 50(4):2176-2194. PubMed ID: 36398744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian regularization applied to ultrasound strain imaging.
    McCormick M; Rubert N; Varghese T
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1612-20. PubMed ID: 21245002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data.
    Lopata RG; Nillesen MM; Hansen HH; Gerrits IH; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2009 May; 35(5):796-812. PubMed ID: 19282094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct and gradient-based average strain estimation by using weighted nearest neighbor cross-correlation peaks.
    Hussain MA; Abu Anas EM; Alam SK; Lee SY; Hasan MK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1713-28. PubMed ID: 22899118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrections to the displacement estimation based on analytic minimization of adaptive regularized cost functions for ultrasound elastography.
    Peng B; Lai J; Wang L; Liu DC
    Biomed Mater Eng; 2014; 24(6):2801-10. PubMed ID: 25226985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical Minimization-Based Regularized Subpixel Shear-Wave Tracking for Ultrasound Elastography.
    Horeh MD; Asif A; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):285-296. PubMed ID: 30530321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An approach to unbiased subsample interpolation for motion tracking.
    McCormick MM; Varghese T
    Ultrason Imaging; 2013 Apr; 35(2):76-87. PubMed ID: 23493609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal Bayesian Regularization for Cardiac Strain Imaging: Simulation and
    Mukaddim RA; Meshram NH; Weichmann AM; Mitchell CC; Varghese T
    IEEE Open J Ultrason Ferroelectr Freq Control; 2021; 1():21-36. PubMed ID: 35174360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Systematic Investigation of Lateral Estimation Using Various Interpolation Approaches in Conventional Ultrasound Imaging.
    Liu Z; Huang C; Luo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Aug; 64(8):1149-1160. PubMed ID: 28534769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Performance of Time Domain Displacement Estimators for Magnetomotive Ultrasound Imaging.
    Ersepke T; Kranemann TC; Schmitz G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 May; 66(5):911-921. PubMed ID: 30869613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hadamard-Encoded Synthetic Transmit Aperture Imaging for Improved Lateral Motion Estimation in Ultrasound Elastography.
    Wang Y; Xie X; He Q; Liao H; Zhang H; Luo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1204-1218. PubMed ID: 35100113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Angular Compounding With Affine-Model-Based Optical Flow for Improvement of Motion Estimation.
    Liu Z; He Q; Luo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Apr; 66(4):701-716. PubMed ID: 30703018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast axial and lateral displacement estimation in myocardial elastography based on RF signals with predictions.
    Zhang Y; Sun T; Teng Y; Li H; Kang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1633-9. PubMed ID: 26405928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Displacement Signal-to-Noise Ratio for Low-Signal Radiation Force Elasticity Imaging Using Bayesian Techniques.
    Dumont DM; Walsh KM; Byram BC
    Ultrasound Med Biol; 2016 Aug; 42(8):1986-97. PubMed ID: 27157861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Total Variation Regularization with Window-Based Time Delay Estimation in Ultrasound Elastography.
    Mirzaei M; Asif A; Rivaz H
    IEEE Trans Med Imaging; 2019 Dec; 38(12):2744-2754. PubMed ID: 31021794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsupervised Convolutional Neural Network for Motion Estimation in Ultrasound Elastography.
    Wei X; Wang Y; Ge L; Peng B; He Q; Wang R; Huang L; Xu Y; Luo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jul; 69(7):2236-2247. PubMed ID: 35500076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-D locally regularized tissue strain estimation from radio-frequency ultrasound images: theoretical developments and results on experimental data.
    Brusseau E; Kybic J; Deprez JF; Basset O
    IEEE Trans Med Imaging; 2008 Feb; 27(2):145-60. PubMed ID: 18334437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially variant regularization of lateral displacement measurement using variance.
    Sumi C; Itoh T
    Ultrasonics; 2009 May; 49(4-5):459-65. PubMed ID: 19155036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.