These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33018452)

  • 1. Electroporation Mechanisms: The Role of Lipid Orientation in the Kinetics of Pore Formation
    Marracino P; Caramazza L; Liberti M; Apollonio F
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2235-2238. PubMed ID: 33018452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric-driven membrane poration: A rationale for water role in the kinetics of pore formation.
    Marracino P; Caramazza L; Montagna M; Ghahri R; D'Abramo M; Liberti M; Apollonio F
    Bioelectrochemistry; 2022 Feb; 143():107987. PubMed ID: 34794113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of electroporation sites in the complex lipid organization of the plasma membrane.
    Rems L; Tang X; Zhao F; Pérez-Conesa S; Testa I; Delemotte L
    Elife; 2022 Feb; 11():. PubMed ID: 35195069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers.
    Fernández ML; Marshall G; Sagués F; Reigada R
    J Phys Chem B; 2010 May; 114(20):6855-65. PubMed ID: 20429602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroporation of Skin Stratum Corneum Lipid Bilayer and Molecular Mechanism of Drug Transport: A Molecular Dynamics Study.
    Gupta R; Rai B
    Langmuir; 2018 May; 34(20):5860-5870. PubMed ID: 29708340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of activation energy for electroporation and pore growth rate in liquid crystalline and gel phases of lipid bilayers using molecular dynamics simulations.
    Majhi AK; Kanchi S; Venkataraman V; Ayappa KG; Maiti PK
    Soft Matter; 2015 Nov; 11(44):8632-40. PubMed ID: 26372335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric field-driven water dipoles: nanoscale architecture of electroporation.
    Tokman M; Lee JH; Levine ZA; Ho MC; Colvin ME; Vernier PT
    PLoS One; 2013; 8(4):e61111. PubMed ID: 23593404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Simulations Reveal the Free Energy Landscape and Transition State of Membrane Electroporation.
    Kasparyan G; Hub JS
    Phys Rev Lett; 2024 Apr; 132(14):148401. PubMed ID: 38640376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular basis of electroporation.
    Tieleman DP
    BMC Biochem; 2004 Jul; 5():10. PubMed ID: 15260890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics insights on temperature and pressure effects on electroporation.
    Müller WA; Sarkis JR; Marczak LDF; Muniz AR
    Biochim Biophys Acta Biomembr; 2022 Dec; 1864(12):184049. PubMed ID: 36113558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations.
    Böckmann RA; de Groot BL; Kakorin S; Neumann E; Grubmüller H
    Biophys J; 2008 Aug; 95(4):1837-50. PubMed ID: 18469089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of lipid electropores II: Comparison of continuum-level modeling of pore conductance to molecular dynamics simulations.
    Rems L; Tarek M; Casciola M; Miklavčič D
    Bioelectrochemistry; 2016 Dec; 112():112-24. PubMed ID: 27091314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of deformability and thermal motion of lipid membrane on electroporation: by molecular dynamics simulations.
    Sun S; Yin G; Lee YK; Wong JT; Zhang TY
    Biochem Biophys Res Commun; 2011 Jan; 404(2):684-8. PubMed ID: 21156156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroporation of heterogeneous lipid membranes.
    Reigada R
    Biochim Biophys Acta; 2014 Mar; 1838(3):814-21. PubMed ID: 24144543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of dimethyl sulfoxide on lipid membrane electroporation.
    Fernández ML; Reigada R
    J Phys Chem B; 2014 Aug; 118(31):9306-12. PubMed ID: 25035931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous and Stress-Induced Pore Formation in Membranes: Theory, Experiments and Simulations.
    Cunill-Semanat E; Salgado J
    J Membr Biol; 2019 Oct; 252(4-5):241-260. PubMed ID: 31363808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane Electroporation and Electropermeabilization: Mechanisms and Models.
    Kotnik T; Rems L; Tarek M; Miklavčič D
    Annu Rev Biophys; 2019 May; 48():63-91. PubMed ID: 30786231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane pore formation in atomistic and coarse-grained simulations.
    Kirsch SA; Böckmann RA
    Biochim Biophys Acta; 2016 Oct; 1858(10):2266-2277. PubMed ID: 26748016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric-field-induced electroporation and permeation of reactive oxygen species across a skin membrane.
    Yadav DK; Kumar S; Choi EH; Kim MH
    J Biomol Struct Dyn; 2021 Mar; 39(4):1343-1353. PubMed ID: 32072876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.