These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33018455)

  • 1. Railing Nanoparticles Along Activated Tracks Towards Continuous-Flow Electrokinetic Enrichment from Blood Plasma
    Kushigbor SDE; Tang Z; Yobas L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2249-2252. PubMed ID: 33018455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectrophoretic particle-particle interaction under AC electrohydrodynamic flow conditions.
    Lee DH; Yu C; Papazoglou E; Farouk B; Noh HM
    Electrophoresis; 2011 Sep; 32(17):2298-306. PubMed ID: 21823132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Railing cells along 3D microelectrode tracks for continuous-flow dielectrophoretic sorting.
    Xing X; Ng CN; Chau ML; Yobas L
    Lab Chip; 2018 Dec; 18(24):3760-3769. PubMed ID: 30403217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic overview of electrode configuration in electric-driven micropumps.
    Tavari T; Nazari M; Meamardoost S; Tamayol A; Samandari M
    Electrophoresis; 2022 Jul; 43(13-14):1476-1520. PubMed ID: 35452525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications.
    Xuan X
    Electrophoresis; 2019 Sep; 40(18-19):2484-2513. PubMed ID: 30816561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear electrokinetic effects in insulator-based dielectrophoretic systems.
    Wang Q; Dingari NN; Buie CR
    Electrophoresis; 2017 Oct; 38(20):2576-2586. PubMed ID: 28763135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal design of microgrooved channels with electrokinetic pumping for lab-on-a-chip applications.
    Du E; Manoochehri S
    IET Nanobiotechnol; 2010 Jun; 4(2):40-9. PubMed ID: 20499997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally biased AC electrokinetic pumping effect for lab-on-a-chip based delivery of biofluids.
    Yuan Q; Wu J
    Biomed Microdevices; 2013 Feb; 15(1):125-33. PubMed ID: 22932955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A visual portable microfluidic experimental device with multiple electric field regulation functions.
    Guo W; Tao Y; Liu W; Song C; Zhou J; Jiang H; Ren Y
    Lab Chip; 2022 Apr; 22(8):1556-1564. PubMed ID: 35352749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrohydrodynamic-mediated dielectrophoretic separation and transport based on asymmetric electrode pairs.
    Du E; Manoochehri S
    Electrophoresis; 2008 Dec; 29(24):5017-25. PubMed ID: 19130586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrothermal pumping with interdigitated electrodes and resistive heaters.
    Williams SJ; Green NG
    Electrophoresis; 2015 Aug; 36(15):1681-9. PubMed ID: 26010255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice.
    Kale A; Song L; Lu X; Yu L; Hu G; Xuan X
    Electrophoresis; 2018 Mar; 39(5-6):887-896. PubMed ID: 29068080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bioparticles in physiological media of high-conductivity.
    Chaurey V; Rohani A; Su YH; Liao KT; Chou CF; Swami NS
    Electrophoresis; 2013 Apr; 34(7):1097-104. PubMed ID: 23436401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrothermal flow on electrodes arrays at physiological conductivities.
    Koklu A; Tansel O; Oksuzoglu H; Sabuncu AC
    IET Nanobiotechnol; 2016 Apr; 10(2):54-61. PubMed ID: 27074854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels.
    Ng WY; Goh S; Lam YC; Yang C; Rodríguez I
    Lab Chip; 2009 Mar; 9(6):802-9. PubMed ID: 19255662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrified lab on disc systems: A comprehensive review on electrokinetic applications.
    Kordzadeh-Kermani V; Madadelahi M; Ashrafizadeh SN; Kulinsky L; Martinez-Chapa SO; Madou MJ
    Biosens Bioelectron; 2022 Oct; 214():114381. PubMed ID: 35820257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.
    Hoettges KF; McDonnell MB; Hughes MP
    Electrophoresis; 2014 Feb; 35(4):467-73. PubMed ID: 24166772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-Chip Impedance for Quantifying Parasitic Voltages During AC Electrokinetic Trapping.
    Farmehini V; Varhue W; Salahi A; Hyler AR; Cemazar J; V Davalos R; Swami NS
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1664-1671. PubMed ID: 31545705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.