BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33018465)

  • 1. A Computational Study of Graphene as a Prospective Material for Microelectrodes in Retinal Prosthesis and Electric Crosstalk Analysis.
    Asghar SA; Pal P; Nazeer K; Mahadevappa M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2291-2294. PubMed ID: 33018465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Honeycomb-Patterned Graphene Microelectrodes: A Promising Approach for Safe and Effective Retinal Stimulation Based on Electro-Thermo-Mechanical Modeling and Simulation.
    Asghar SA; Mahadevappa M
    IEEE Trans Nanobioscience; 2024 Apr; 23(2):262-271. PubMed ID: 37747869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects on Retinal Stimulation of the Geometry and the Insertion Location of Penetrating Electrodes.
    Son Y; Chen ZC; Roh H; Lee BC; Im M
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3803-3812. PubMed ID: 37729573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Three-Dimensional Microelectrode Array to Generate Virtual Electrodes for Epiretinal Prosthesis Based on a Modeling Study.
    Lyu Q; Lu Z; Li H; Qiu S; Guo J; Sui X; Sun P; Li L; Chai X; Lovell NH
    Int J Neural Syst; 2020 Mar; 30(3):2050006. PubMed ID: 32116093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible microelectrode array for retinal prosthesis.
    Bin Sun ; Tengyue Li ; Kai Xia ; Qi Zeng ; Tianzhun Wu ; Humayun MS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1097-1100. PubMed ID: 29060066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a very large array for retinal stimulation.
    Waschkowski F; Brockmann C; Laube T; Mokwa W; Roessler G; Walter P
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2748-51. PubMed ID: 24110296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D finite element modeling of epiretinal stimulation: Impact of prosthetic electrode size and distance from the retina.
    Sui X; Huang Y; Feng F; Huang C; Chan LL; Wang G
    Int J Artif Organs; 2015 May; 38(5):277-87. PubMed ID: 26044659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting perceptual thresholds in a suprachoroidal retinal prosthesis.
    Shivdasani MN; Sinclair NC; Dimitrov PN; Varsamidis M; Ayton LN; Luu CD; Perera T; McDermott HJ; Blamey PJ;
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6467-81. PubMed ID: 25205858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D flexible microelectrode array for subretinal stimulation.
    Seo HW; Kim N; Ahn J; Cha S; Goo YS; Kim S
    J Neural Eng; 2019 Aug; 16(5):056016. PubMed ID: 31357188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-density microelectrode-tissue-microelectrode sandwich platform for application of retinal circuit study.
    Yang F; Yang CH; Wang FM; Cheng YT; Teng CC; Lee LJ; Yang CH; Fan LS
    Biomed Eng Online; 2015 Nov; 14():109. PubMed ID: 26611649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microelectrode Array With Integrated Pneumatic Channels for Dynamic Control of Electrode Position in Retinal Implants.
    Xu Y; Pang S
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2292-2298. PubMed ID: 34705653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical Stimulation of the Retina to Produce Artificial Vision.
    Weiland JD; Walston ST; Humayun MS
    Annu Rev Vis Sci; 2016 Oct; 2():273-294. PubMed ID: 28532361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration.
    Chung WG; Jang J; Cui G; Lee S; Jeong H; Kang H; Seo H; Kim S; Kim E; Lee J; Lee SG; Byeon SH; Park JU
    Nat Nanotechnol; 2024 May; 19(5):688-697. PubMed ID: 38225357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Finite element analysis of temperature field of retina by electrical stimulation with microelectrode array].
    Wang W; Qiao Q; Gao W; Wu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1255-9, 1271. PubMed ID: 25868240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat.
    Hesse L; Schanze T; Wilms M; Eger M
    Graefes Arch Clin Exp Ophthalmol; 2000 Oct; 238(10):840-5. PubMed ID: 11127571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of stimulation parameters for epi-retinal implant based on biosafety consideration.
    Lu Y; Qin S; Zhao L; Yue L; Wu T; Qin B; Xu Z
    PLoS One; 2020; 15(7):e0236176. PubMed ID: 32697792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of visual field position induced by a retinal prosthesis simulator on mobility.
    Endo T; Hozumi K; Hirota M; Kanda H; Morimoto T; Nishida K; Fujikado T
    Graefes Arch Clin Exp Ophthalmol; 2019 Aug; 257(8):1765-1770. PubMed ID: 31147839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of thin-film flexible microelectrode arrays for retinal stimulation and recording.
    Mathieson K; Moodie AR; Grant E; Morrison JD
    J Med Eng Technol; 2013 Feb; 37(2):79-85. PubMed ID: 23249248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.