These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33018495)

  • 1. Learning Conflicts for C-arm Kinematic Modeling using Artificial Intelligence.
    Ledesma S; Guerrero-Turrubiates J; Gonzalez-Reyna SE; Almanza-Ojeda DL; Fallavollita P
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2421-2424. PubMed ID: 33018495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the Kinematics and Workspace of a Robot Using Artificial Neural Networks.
    Boanta C; Brișan C
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closed-form inverse kinematics for interventional C-arm X-ray imaging with six degrees of freedom: modeling and application.
    Wang L; Fallavollita P; Zou R; Chen X; Weidert S; Navab N
    IEEE Trans Med Imaging; 2012 May; 31(5):1086-99. PubMed ID: 22293978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Role of artificial intelligence in the diagnosis and treatment of gastrointestinal diseases].
    Yu YY
    Zhonghua Wei Chang Wai Ke Za Zhi; 2020 Jan; 23(1):33-37. PubMed ID: 31958928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242).
    Almusawi AR; Dülger LC; Kapucu S
    Comput Intell Neurosci; 2016; 2016():5720163. PubMed ID: 27610129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging.
    Currie G; Hawk KE; Rohren E; Vial A; Klein R
    J Med Imaging Radiat Sci; 2019 Dec; 50(4):477-487. PubMed ID: 31601480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using deep neural networks for kinematic analysis: Challenges and opportunities.
    Cronin NJ
    J Biomech; 2021 Jun; 123():110460. PubMed ID: 34029787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementing artificial neural networks through bionic construction.
    He H; Yang X; Xu Z; Deng N; Shang Y; Liu G; Ji M; Zheng W; Zhao J; Dong L
    PLoS One; 2019; 14(2):e0212368. PubMed ID: 30794587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence and computer vision in orthopaedic trauma : the why, what, and how.
    Prijs J; Liao Z; Ashkani-Esfahani S; Olczak J; Gordon M; Jayakumar P; Jutte PC; Jaarsma RL; IJpma FFA; Doornberg JN;
    Bone Joint J; 2022 Aug; 104-B(8):911-914. PubMed ID: 35909378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebellum-inspired neural network solution of the inverse kinematics problem.
    Asadi-Eydivand M; Ebadzadeh MM; Solati-Hashjin M; Darlot C; Abu Osman NA
    Biol Cybern; 2015 Dec; 109(6):561-74. PubMed ID: 26438095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care?
    Bini SA
    J Arthroplasty; 2018 Aug; 33(8):2358-2361. PubMed ID: 29656964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filtering sensory information with XCSF: improving learning robustness and robot arm control performance.
    Kneissler J; Stalph PO; Drugowitsch J; Butz MV
    Evol Comput; 2014; 22(1):139-58. PubMed ID: 23746295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Meets Biology: a Primer on Artificial Intelligence in Cardiology and Cardiac Imaging.
    Dilsizian ME; Siegel EL
    Curr Cardiol Rep; 2018 Oct; 20(12):139. PubMed ID: 30334108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short Sequence Chinese-English Machine Translation Based on Generative Adversarial Networks of Emotion.
    Wang H
    Comput Intell Neurosci; 2022; 2022():3385477. PubMed ID: 35685136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Intelligent Model With Neural Network Machine Learning for the Diagnosis of Orthognathic Surgery.
    Choi HI; Jung SK; Baek SH; Lim WH; Ahn SJ; Yang IH; Kim TW
    J Craniofac Surg; 2019 Oct; 30(7):1986-1989. PubMed ID: 31205280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial intelligence: a new frontier for anaesthesiology training.
    Arora A
    Br J Anaesth; 2020 Nov; 125(5):e407-e408. PubMed ID: 32682557
    [No Abstract]   [Full Text] [Related]  

  • 18. [Artificial intelligence in image analysis-fundamentals and new developments].
    Pouly M; Koller T; Gottfrois P; Lionetti S
    Hautarzt; 2020 Sep; 71(9):660-668. PubMed ID: 32789670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning algorithms for predicting scapular kinematics.
    Nicholson KF; Richardson RT; van Roden EAR; Quinton RG; Anzilotti KF; Richards JG
    Med Eng Phys; 2019 Mar; 65():39-45. PubMed ID: 30733173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.