These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 33018537)
1. Preliminary Results on Density Poincare Plot Based Atrial Fibrillation Detection from Premature Atrial/Ventricular Contractions Bashar SK; Han D; Zieneddin F; Ding E; Walkey AJ; McManus DD; Chon KH Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2594-2597. PubMed ID: 33018537 [TBL] [Abstract][Full Text] [Related]
2. Novel Density Poincaré Plot Based Machine Learning Method to Detect Atrial Fibrillation From Premature Atrial/Ventricular Contractions. Bashar SK; Han D; Zieneddin F; Ding E; Fitzgibbons TP; Walkey AJ; McManus DD; Javidi B; Chon KH IEEE Trans Biomed Eng; 2021 Feb; 68(2):448-460. PubMed ID: 32746035 [TBL] [Abstract][Full Text] [Related]
3. Premature Atrial and Ventricular Contraction Detection using Photoplethysmographic Data from a Smartwatch. Han D; Bashar SK; Mohagheghian F; Ding E; Whitcomb C; McManus DD; Chon KH Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33028000 [TBL] [Abstract][Full Text] [Related]
4. Digital Image Processing Features of Smartwatch Photoplethysmography for Cardiac Arrhythmia Detection. Han D; Bashar SK; Zieneddin F; Ding E; Whitcomb C; McManus DD; Chon KH Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4071-4074. PubMed ID: 33018893 [TBL] [Abstract][Full Text] [Related]
7. An improved method to detect arrhythmia using ensemble learning-based model in multi lead electrocardiogram (ECG). Mandala S; Rizal A; Adiwijaya ; Nurmaini S; Suci Amini S; Almayda Sudarisman G; Wen Hau Y; Hanan Abdullah A PLoS One; 2024; 19(4):e0297551. PubMed ID: 38593145 [TBL] [Abstract][Full Text] [Related]
8. Atrial Fibrillation Detection During Sepsis: Study on MIMIC III ICU Data. Bashar SK; Hossain MB; Ding E; Walkey AJ; McManus DD; Chon KH IEEE J Biomed Health Inform; 2020 Nov; 24(11):3124-3135. PubMed ID: 32750900 [TBL] [Abstract][Full Text] [Related]
9. Feasibility of atrial fibrillation detection from a novel wearable armband device. Bashar SK; Hossain MB; Lázaro J; Ding EY; Noh Y; Cho CH; McManus DD; Fitzgibbons TP; Chon KH Cardiovasc Digit Health J; 2021 Jun; 2(3):179-191. PubMed ID: 35265907 [TBL] [Abstract][Full Text] [Related]
10. A Real-Time PPG Peak Detection Method for Accurate Determination of Heart Rate during Sinus Rhythm and Cardiac Arrhythmia. Han D; Bashar SK; Lázaro J; Mohagheghian F; Peitzsch A; Nishita N; Ding E; Dickson EL; DiMezza D; Scott J; Whitcomb C; Fitzgibbons TP; McManus DD; Chon KH Biosensors (Basel); 2022 Jan; 12(2):. PubMed ID: 35200342 [TBL] [Abstract][Full Text] [Related]
11. Multiclass Convolutional Neural Networks for Atrial Fibrillation Classification. Sbrollini A; Tomassini S; Emaldi E; Marcantoni I; Morettini M; Dragoni AF; Burattini L Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1288-1291. PubMed ID: 36086141 [TBL] [Abstract][Full Text] [Related]
12. A Detector for Premature Atrial and Ventricular Complexes. García-Isla G; Mainardi L; Corino VDA Front Physiol; 2021; 12():678558. PubMed ID: 34220543 [TBL] [Abstract][Full Text] [Related]
13. Smartwatch PPG Peak Detection Method for Sinus Rhythm and Cardiac Arrhythmia. Han D; Bashar SK; Lazaro J; Ding E; Whitcomb C; McManus DD; Chon KH Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4310-4313. PubMed ID: 31946821 [TBL] [Abstract][Full Text] [Related]
14. Use of self-gated radial cardiovascular magnetic resonance to detect and classify arrhythmias (atrial fibrillation and premature ventricular contraction). Piekarski E; Chitiboi T; Ramb R; Feng L; Axel L J Cardiovasc Magn Reson; 2016 Nov; 18(1):83. PubMed ID: 27884152 [TBL] [Abstract][Full Text] [Related]
15. Localization of origins of premature ventricular contraction in the whole ventricle based on machine learning and automatic beat recognition from 12-lead ECG. He K; Nie Z; Zhong G; Yang C; Sun J Physiol Meas; 2020 Jun; 41(5):055007. PubMed ID: 32252035 [TBL] [Abstract][Full Text] [Related]
17. Automated Method for Discrimination of Arrhythmias Using Time, Frequency, and Nonlinear Features of Electrocardiogram Signals. Hajeb-Mohammadalipour S; Ahmadi M; Shahghadami R; Chon KH Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29966276 [TBL] [Abstract][Full Text] [Related]
18. Diagnostic reliability of monitoring for premature atrial and ventricular complexes. Måneheim A; Economou Lundeberg J; Persson AP; Edegran A; Grotek-Cuprjak A; Juhlin T; Benezet-Mazuecos J; Ellenbogen KA; Engström G; Healey JS; Johnson LS Europace; 2024 Aug; 26(8):. PubMed ID: 39056247 [TBL] [Abstract][Full Text] [Related]
19. A "two-step classification" machine learning method for non-invasive localization of premature ventricular contraction origins based on 12-lead ECG. Wang Y; Feng X; Zhong G; Yang C J Interv Card Electrophysiol; 2024 Apr; 67(3):457-470. PubMed ID: 37097585 [TBL] [Abstract][Full Text] [Related]
20. Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study. Kwon S; Hong J; Choi EK; Lee E; Hostallero DE; Kang WJ; Lee B; Jeong ER; Koo BK; Oh S; Yi Y JMIR Mhealth Uhealth; 2019 Jun; 7(6):e12770. PubMed ID: 31199302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]