These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33018561)

  • 1. Estimation of Arterial Blood Pressure Waveform from Photoplethysmogram Signal using Linear Transfer Function Approach.
    Dash A; Ghosh N; Patra A; Choudhury AD
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2691-2694. PubMed ID: 33018561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks.
    Cheng J; Xu Y; Song R; Liu Y; Li C; Chen X
    Comput Biol Med; 2021 Nov; 138():104877. PubMed ID: 34571436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully convolutional neural network and PPG signal for arterial blood pressure waveform estimation.
    Zhou Y; Tan Z; Liu Y; Cheng H
    Physiol Meas; 2023 Sep; 44(7):. PubMed ID: 37402386
    [No Abstract]   [Full Text] [Related]  

  • 5. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
    Li Z; He W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel CS-NET architecture based on the unification of CNN, SVM and super-resolution spectrogram to monitor and classify blood pressure using photoplethysmography.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Comput Methods Programs Biomed; 2023 Oct; 240():107716. PubMed ID: 37542944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography.
    Kim DK; Kim YT; Kim H; Kim DJ
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3697-3707. PubMed ID: 35511844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schrödinger Spectrum Based PPG Features for the Estimation of the Arterial Blood Pressure.
    Li P; Laleg-Kirati TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2683-2686. PubMed ID: 33018559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoplethysmography waveform analysis for classification of vascular tone and arterial blood pressure: Study based on neural networks.
    Echeverría NI; Scandurra AG; Acosta CM; Meschino GJ; Suarez Sipmann F; Tusman G
    Rev Esp Anestesiol Reanim (Engl Ed); 2023 Apr; 70(4):209-217. PubMed ID: 36868265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of Continuous Blood Pressure from PPG via a Federated Learning Approach.
    Brophy E; De Vos M; Boylan G; Ward T
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation.
    Harfiya LN; Chang CC; Li YH
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method for continuous blood pressure estimation based on a single-channel photoplethysmogram signal.
    Hu Q; Deng X; Wang A; Yang C
    Physiol Meas; 2021 Jan; 41(12):125009. PubMed ID: 33166940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation and Validation of Arterial Blood Pressure Using Photoplethysmogram Morphology Features in Conjunction With Pulse Arrival Time in Large Open Databases.
    Yang S; Sohn J; Lee S; Lee J; Kim HC
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):1018-1030. PubMed ID: 32750963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy.
    Lin WH; Wang H; Samuel OW; Liu G; Huang Z; Li G
    Physiol Meas; 2018 Feb; 39(2):025005. PubMed ID: 29319536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer Learning Approach.
    Leitner J; Chiang PH; Dey S
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):218-228. PubMed ID: 34077378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An algorithm to detect dicrotic notch in arterial blood pressure and photoplethysmography waveforms using the iterative envelope mean method.
    Pal R; Rudas A; Kim S; Chiang JN; Braney A; Cannesson M
    medRxiv; 2024 Mar; ():. PubMed ID: 38496617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An algorithm to detect dicrotic notch in arterial blood pressure and photoplethysmography waveforms using the iterative envelope mean method.
    Pal R; Rudas A; Kim S; Chiang JN; Barney A; Cannesson M
    Comput Methods Programs Biomed; 2024 Jun; 254():108283. PubMed ID: 38901273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning.
    Schrumpf F; Frenzel P; Aust C; Osterhoff G; Fuchs M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.