These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33018658)

  • 1. A brain-computer interface based on high-frequency steady-state asymmetric visual evoked potentials
    Yue L; Xiao X; Xu M; Chen L; Wang Y; Jung TP; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3090-3093. PubMed ID: 33018658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating visual flickers for eliciting robust steady-state visual evoked potentials at flexible frequencies using monitor refresh rate.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    PLoS One; 2014; 9(6):e99235. PubMed ID: 24918435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces.
    Cao T; Wan F; Wong CM; da Cruz JN; Hu Y
    Biomed Eng Online; 2014 Mar; 13(1):28. PubMed ID: 24621009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-performance SSVEP-based BCI using imperceptible flickers.
    Ming G; Pei W; Gao X; Wang Y
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36669202
    [No Abstract]   [Full Text] [Related]  

  • 8. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A frequency recognition method based on multitaper spectral analysis and SNR estimation for SSVEP-based brain-computer interface.
    Chen Yang ; Xu Han ; Yijun Wang ; Xiaorong Gao
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1930-1933. PubMed ID: 29060270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-speed brain speller using steady-state visual evoked potentials.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    Int J Neural Syst; 2014 Sep; 24(6):1450019. PubMed ID: 25081427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Advances in brain-computer interface based on high-frequency steady-state visual evoked potential].
    Zheng C; Liu Y; Xiao X; Zhou X; Xu F; Xu M; Ming D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Feb; 40(1):155-162. PubMed ID: 36854561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementing a calibration-free SSVEP-based BCI system with 160 targets.
    Chen Y; Yang C; Ye X; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34134091
    [No Abstract]   [Full Text] [Related]  

  • 13. A high-speed hybrid brain-computer interface with more than 200 targets.
    Han J; Xu M; Xiao X; Yi W; Jung TP; Ming D
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36608342
    [No Abstract]   [Full Text] [Related]  

  • 14. The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface.
    Xie J; Xu G; Luo A; Li M; Zhang S; Han C; Yan W
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28805731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing an online steady-state visual evoked potential-based brain-computer interface system using EarEEG.
    Wang YT; Nakanishi M; Kappel SL; Kidmose P; Mandic DP; Wang Y; Cheng CK; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2271-4. PubMed ID: 26736745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis.
    Nakanishi M; Wang Y; Chen X; Wang YT; Gao X; Jung TP
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):104-112. PubMed ID: 28436836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing detection of steady-state visual evoked potentials using individual training data.
    Wang Y; Nakanishi M; Wang YT; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3037-40. PubMed ID: 25570631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tradeoff between User Experience and BCI Classification Accuracy with Frequency Modulated Steady-State Visual Evoked Potentials.
    Dreyer AM; Herrmann CS; Rieger JW
    Front Hum Neurosci; 2017; 11():391. PubMed ID: 28798676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.
    Rabiul Islam M; Khademul Islam Molla M; Nakanishi M; Tanaka T
    J Neural Eng; 2017 Apr; 14(2):026007. PubMed ID: 28071599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.