These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33018666)

  • 1. Simplified Optimal Estimation of Time-Varying Electromyogram Standard Deviation (EMGσ).
    Rajotte KJ; Wang H; Wang H; Dai C; Zhu Z; Huang X; Clancy EA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3122-3125. PubMed ID: 33018666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simplified Optimal Estimation of Time-Varying Electromyogram Standard Deviation (EMGσ): Evaluation on Two Datasets.
    Wang H; Rajotte KJ; Wang H; Dai C; Zhu Z; Huang X; Clancy EA
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of advanced electromyogram (EMG) amplitude processors on EMG-to-torque estimation during constant-posture, force-varying contractions.
    Clancy EA; Bida O; Rancourt D
    J Biomech; 2006; 39(14):2690-8. PubMed ID: 16243341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromyogram bandwidth requirements when the signal is whitened.
    Dasog M; Koirala K; Liu P; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):664-70. PubMed ID: 24122574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation and application of EMG amplitude during dynamic contractions.
    Clancy EA; Bouchard S; Rancourt D
    IEEE Eng Med Biol Mag; 2001; 20(6):47-54. PubMed ID: 11838258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the electromyogram to anticipate torques about the elbow.
    Koirala K; Dasog M; Liu P; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):396-402. PubMed ID: 25014956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relating agonist-antagonist electromyograms to joint torque during isometric, quasi-isotonic, nonfatiguing contractions.
    Clancy EA; Hogan N
    IEEE Trans Biomed Eng; 1997 Oct; 44(10):1024-8. PubMed ID: 9311171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single site electromyograph amplitude estimation.
    Clancy EA; Hogan N
    IEEE Trans Biomed Eng; 1994 Feb; 41(2):159-67. PubMed ID: 8026849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of generic EMG-Torque models across two Upper-Limb joints.
    Wang H; Bardizbanian B; Zhu Z; Wang H; Dai C; Clancy EA
    J Electromyogr Kinesiol; 2024 Apr; 75():102864. PubMed ID: 38310768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive whitening in electromyogram amplitude estimation for epoch-based applications.
    Prakash P; Salini CA; Tranquilli JA; Brown DR; Clancy EA
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):331-4. PubMed ID: 15709671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of joint angle on EMG-torque model during constant-posture, quasi-constant-torque contractions.
    Liu P; Liu L; Martel F; Rancourt D; Clancy EA
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1020-8. PubMed ID: 23932797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal Estimation of EMG Standard Deviation (EMG σ ) in Additive Measurement Noise: Model-Based Derivations and Their Implications.
    Wang H; Rajotte KJ; Wang H; Dai C; Zhu Z; Bhuiyan M; Huang X; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2328-2335. PubMed ID: 31689197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple site electromyograph amplitude estimation.
    Clancy EA; Hogan N
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):203-11. PubMed ID: 7868148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive whitening of the electromyogram to improve amplitude estimation.
    Clancy EA; Farry KA
    IEEE Trans Biomed Eng; 2000 Jun; 47(6):709-19. PubMed ID: 10833845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolutional Neural Network Approach for Elbow Torque Estimation during Quasi-dynamic and Dynamic Contractions.
    Hajian G; Morin E; Etemad A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():665-668. PubMed ID: 34891380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data Management for Transfer Learning Approaches to Elbow EMG-Torque Modeling.
    Jiang X; Bardizbanian B; Dai C; Chen W; Clancy E
    IEEE Trans Biomed Eng; 2021 Aug; 68(8):2592-2601. PubMed ID: 33788675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations.
    Song R; Tong KY
    Med Biol Eng Comput; 2005 Jul; 43(4):473-80. PubMed ID: 16255429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of joint angle on the calibration and performance of EMG amplitude estimators.
    Clancy EA; Hogan N
    IEEE Trans Biomed Eng; 1998 May; 45(5):664-8. PubMed ID: 9581066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whitening of the electromyogram for improved classification accuracy in prosthesis control.
    Liu L; Liu P; Clancy EA; Scheme E; Englehart KB
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2627-30. PubMed ID: 23366464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.