These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33018671)

  • 1. Complementing Clinical Gait Assessments of Spinal Cord Injured Individuals using Wearable Movement Sensors.
    Werner C; Schneider S; Gassert R; Curt A; Demko L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3142-3145. PubMed ID: 33018671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-driven characterization of walking after a spinal cord injury using inertial sensors.
    Werner C; Gönel M; Lerch I; Curt A; Demkó L
    J Neuroeng Rehabil; 2023 Apr; 20(1):55. PubMed ID: 37120519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using wearable sensors to characterize gait after spinal cord injury: evaluation of test-retest reliability and construct validity.
    Lemay JF; Noamani A; Unger J; Houston DJ; Rouhani H; Musselmann KE
    Spinal Cord; 2021 Jun; 59(6):675-683. PubMed ID: 33024297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial gait in complete spinal cord injured subjects: how to assess clinical performance.
    Pithon KR; Abreu DC; Vasconcelos-Neto R; Martins LE; Cliquet A
    Arq Neuropsiquiatr; 2015 Feb; 73(2):111-4. PubMed ID: 25742579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable Inertial Sensors to Assess Gait during the 6-Minute Walk Test: A Systematic Review.
    Storm FA; Cesareo A; Reni G; Biffi E
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32384806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a Mobile Gait Analysis for Patients with a Spinal Cord Injury: A Robust Algorithm Validated for Slow Walking Speeds.
    Werner C; Awai Easthope C; Curt A; Demkó L
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy and comparison of sensor-based gait speed estimations under standardized and daily life conditions in children undergoing rehabilitation.
    Rast FM; Aschwanden S; Werner C; Demkó L; Labruyère R
    J Neuroeng Rehabil; 2022 Oct; 19(1):105. PubMed ID: 36195950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury.
    Barthélemy D; Willerslev-Olsen M; Lundell H; Biering-Sørensen F; Nielsen JB
    Prog Brain Res; 2015; 218():79-101. PubMed ID: 25890133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of orthotic gait training with powered hip orthosis on walking in paraplegic patients.
    Arazpour M; Bani MA; Hutchins SW; Curran S; Javanshir MA; Mousavi ME
    Disabil Rehabil Assist Technol; 2014 May; 9(3):226-30. PubMed ID: 24749556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overground wearable powered exoskeleton for gait training in subacute stroke subjects: clinical and gait assessments.
    Goffredo M; Guanziroli E; Pournajaf S; Gaffuri M; Gasperini G; Filoni S; Baratta S; Damiani C; Franceschini M; Molteni F;
    Eur J Phys Rehabil Med; 2019 Dec; 55(6):710-721. PubMed ID: 30723189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training for mobility with exoskeleton robot in spinal cord injury patients: a pilot study.
    Sale P; Russo EF; Scarton A; Calabrò RS; Masiero S; Filoni S
    Eur J Phys Rehabil Med; 2018 Oct; 54(5):745-751. PubMed ID: 29517187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury.
    Awai L; Bolliger M; Ferguson AR; Courtine G; Curt A
    Neurorehabil Neural Repair; 2016 Jul; 30(6):562-72. PubMed ID: 26428035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of gait between healthy participants and persons with spinal cord injury when using the advanced reciprocating gait orthosis.
    Arazpour M; Joghtaei M; Bahramizadeh M; Ahmadi Bani M; Hutchins SW; Curran S; Mousavi ME; Sharifi G; Mardani MA
    Prosthet Orthot Int; 2016 Apr; 40(2):287-93. PubMed ID: 26195620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trainer in a pocket - proof-of-concept of mobile, real-time, foot kinematics feedback for gait pattern normalization in individuals after stroke, incomplete spinal cord injury and elderly patients.
    Schließmann D; Nisser M; Schuld C; Gladow T; Derlien S; Heutehaus L; Weidner N; Smolenski U; Rupp R
    J Neuroeng Rehabil; 2018 May; 15(1):44. PubMed ID: 29843763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait adaptation during walking on an inclined pathway following spinal cord injury.
    Desrosiers E; Duclos C; Nadeau S
    Clin Biomech (Bristol, Avon); 2014 May; 29(5):500-5. PubMed ID: 24805009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Assessment of Ataxic Gait using Inertial Sensing at Different Walking Speeds.
    Phan D; Nguyen N; Pathirana PN; Horne M; Power L; Szmulewicz D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4600-4603. PubMed ID: 31946889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of a Sensor-Based Technological Platform in Assessing Gait and Sleep of In-Hospital Stroke and Incomplete Spinal Cord Injury (iSCI) Patients.
    Hendriks MMS; Vos-van der Hulst M; Keijsers NLW
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32408490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.