These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33018715)

  • 1. The use of handheld marker to calibrate a field-programmable gate array based eye tracker for artificial vision system.
    Caspi A; Roy A; Barry MP; Sadeghi R; Kartha A; Dagnelie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3323-3326. PubMed ID: 33018715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eye Movement Control in the Argus II Retinal-Prosthesis Enables Reduced Head Movement and Better Localization Precision.
    Caspi A; Roy A; Wuyyuru V; Rosendall PE; Harper JW; Katyal KD; Barry MP; Dagnelie G; Greenberg RJ
    Invest Ophthalmol Vis Sci; 2018 Feb; 59(2):792-802. PubMed ID: 29392324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinotopic to Spatiotopic Mapping in Blind Patients Implanted With the Argus II Retinal Prosthesis.
    Caspi A; Roy A; Dorn JD; Greenberg RJ
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):119-127. PubMed ID: 28114567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Gaze Detection Accuracy Using the Calibration Information-Based Fuzzy System.
    Gwon SY; Jung D; Pan W; Park KR
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26742045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for measuring gaze orientation in space in unrestrained head conditions.
    Cesqui B; de Langenberg Rv; Lacquaniti F; d'Avella A
    J Vis; 2013 Jul; 13(8):. PubMed ID: 23902754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of eye position on spatial localization in blind subjects wearing an Argus II retinal prosthesis.
    Sabbah N; Authié CN; Sanda N; Mohand-Said S; Sahel JA; Safran AB
    Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):8259-66. PubMed ID: 25414187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of slippage on the data quality of head-worn eye trackers.
    Niehorster DC; Santini T; Hessels RS; Hooge ITC; Kasneci E; Nyström M
    Behav Res Methods; 2020 Jun; 52(3):1140-1160. PubMed ID: 31898290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel eye gaze tracking techniques under natural head movement.
    Zhu Z; Ji Q
    IEEE Trans Biomed Eng; 2007 Dec; 54(12):2246-60. PubMed ID: 18075041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new comprehensive eye-tracking test battery concurrently evaluating the Pupil Labs glasses and the EyeLink 1000.
    Ehinger BV; Groß K; Ibs I; König P
    PeerJ; 2019; 7():e7086. PubMed ID: 31328028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Gaze Estimation Using RGB-IR Cameras.
    Mokatren M; Kuflik T; Shimshoni I
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eye movements as a marker for visual prosthesis spatial mapping - A feasibility study using a blind patient implanted with the Argus II retinal prosthesis.
    Caspi A; Dorn J; Helder JB; Katyal KD; Roy A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5443-5446. PubMed ID: 28269489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Head movement compensation and multi-modal event detection in eye-tracking data for unconstrained head movements.
    Larsson L; Schwaller A; Nyström M; Stridh M
    J Neurosci Methods; 2016 Dec; 274():13-26. PubMed ID: 27693470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A self-calibrating, camera-based eye tracker for the recording of rodent eye movements.
    Zoccolan D; Graham BJ; Cox DD
    Front Neurosci; 2010; 4():193. PubMed ID: 21152259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What do surgeons see: capturing and synchronizing eye gaze for surgery applications.
    Atkins MS; Tien G; Khan RS; Meneghetti A; Zheng B
    Surg Innov; 2013 Jun; 20(3):241-8. PubMed ID: 22696024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Accuracy 3D Gaze Estimation with Efficient Recalibration for Head-Mounted Gaze Tracking Systems.
    Xia Y; Liang J; Li Q; Xin P; Zhang N
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote gaze tracking system for 3D environments.
    Congcong Liu ; Herrup K; Shi BE
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1768-1771. PubMed ID: 29060230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Head-free, remote eye-gaze detection system based on pupil-corneal reflection method with easy calibration using two stereo-calibrated video cameras.
    Ebisawa Y; Fukumoto K
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2952-60. PubMed ID: 23751948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Method to Compensate Head Movements for Mobile Eye Tracker Using Invisible Markers.
    Osawa R; Shirayama S
    J Eye Mov Res; 2018 Jan; 11(1):. PubMed ID: 33828679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of Three Head Mounted Eye-Tracker in Anesthesia: A Feasibility Study.
    Klausen A; Röhrig R; Lipprandt M
    Stud Health Technol Inform; 2019 Aug; 264():1238-1242. PubMed ID: 31438123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speed and accuracy of head- and eye-based aiming systems at high vertical acceleration.
    Ineson J; Durnell L; Ebbage JL; Jarrett DN; Neary C; Reed MA
    Aviat Space Environ Med; 2004 May; 75(5):420-8. PubMed ID: 15152894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.