BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33018870)

  • 1. Hydrophilic Conductive Sponge Sensors for Fast Setup, Low Impedance Bio-potential Measurements.
    Krishnan A; Rozylowicz K; Kelly SK; Grover P
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3973-3976. PubMed ID: 33018870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Cost Carbon Fiber-Based Conductive Silicone Sponge EEG Electrodes.
    Krishnan A; Kumar R; Venkatesh P; Kelly S; Grover P
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1287-1290. PubMed ID: 30440626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation.
    Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT
    Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Bristle-Shaped Semi-Dry Electrode With Low Contact Impedance and Ease of Use Features for EEG Signal Measurements.
    Gao KP; Yang HJ; Liao LL; Jiang CP; Zhao N; Wang XL; Li XY; Chen X; Yang B; Liu J
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):750-761. PubMed ID: 31170063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel dry polymer foam electrodes for long-term EEG measurement.
    Lin CT; Liao LD; Liu YH; Wang IJ; Lin BS; Chang JY
    IEEE Trans Biomed Eng; 2011 May; 58(5):1200-7. PubMed ID: 21193371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel hydrogel-based preparation-free EEG electrode.
    Alba NA; Sclabassi RJ; Sun M; Cui XT
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites.
    Li G; Wu J; Xia Y; Wu Y; Tian Y; Liu J; Chen D; He Q
    J Neural Eng; 2020 Mar; 17(2):026001. PubMed ID: 32000145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Film Electrode upon Nanoarchitectonics of Bacterial Cellulose and Conductive Fabric for Forehead Electroencephalogram Measurement.
    Gao K; Wu N; Ji B; Liu J
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-Scale topography dry electrode for biopotential measurements.
    Vanlerberghe F; De Volder M; de Beeck MO; Penders J; Reynaerts D; Puers R; Van Hoof C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1892-5. PubMed ID: 22254700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of impedance spectra for dry and wet EarEEG electrodes.
    Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3161-4. PubMed ID: 26736963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dry and noncontact EEG sensors for mobile brain-computer interfaces.
    Chi YM; Wang YT; Wang Y; Maier C; Jung TP; Cauwenberghs G
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):228-35. PubMed ID: 22180514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-service characterization of a polymer wick-based quasi-dry electrode for rapid pasteless electroencephalography.
    Pedrosa P; Fiedler P; Pestana V; Vasconcelos B; Gaspar H; Amaral MH; Freitas D; Haueisen J; Nóbrega JM; Fonseca C
    Biomed Tech (Berl); 2018 Jul; 63(4):349-359. PubMed ID: 28467306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular multipin electrodes for comfortable dry EEG.
    Fiedler P; Strohmeier D; Hunold A; Griebel S; Muhle R; Schreiber M; Pedrosa P; Vasconcelos B; Fonseca C; Vaz F; Haueisen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5705-5708. PubMed ID: 28269550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Dry-Contact EEG Electrodes and an Empirical Comparison of Ag/AgCl and IrO
    Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3127-3130. PubMed ID: 36086317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring.
    Zhang L; Kumar KS; He H; Cai CJ; He X; Gao H; Yue S; Li C; Seet RC; Ren H; Ouyang J
    Nat Commun; 2020 Sep; 11(1):4683. PubMed ID: 32943621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible, Air Dryable, and Fiber Modified Aerogel-Based Wet Electrode for Electrophysiological Monitoring.
    Saadatnia Z; GhaffariMosanenzadeh S; Marquez Chin M; Naguib HE; Popovic MR
    IEEE Trans Biomed Eng; 2021 Jun; 68(6):1820-1827. PubMed ID: 32897858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel.
    Puurtinen MM; Komulainen SM; Kauppinen PK; Malmivuo JA; Hyttinen JA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6012-5. PubMed ID: 17946734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Low-Contact-Impedance Dry Electrodes for Electroencephalogram Signal Acquisition.
    Damalerio RB; Lim R; Gao Y; Zhang TT; Cheng MY
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, Fabrication, and Experimental Validation of Novel Flexible Silicon-Based Dry Sensors for Electroencephalography Signal Measurements.
    Yu YH; Lu SW; Liao LD; Lin CT
    IEEE J Transl Eng Health Med; 2014; 2():2700307. PubMed ID: 27170884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces.
    Li G; Liu Y; Chen Y; Li M; Song J; Li K; Zhang Y; Hu L; Qi X; Wan X; Liu J; He Q; Zhou H
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36863014
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.