These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33018870)

  • 21. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces.
    Li G; Liu Y; Chen Y; Li M; Song J; Li K; Zhang Y; Hu L; Qi X; Wan X; Liu J; He Q; Zhou H
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36863014
    [No Abstract]   [Full Text] [Related]  

  • 22. Signal correlation between wet and original dry electrodes in electroencephalogram according to the contact impedance of dry electrodes.
    Higashi Y; Yokota Y; Naruse Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1062-1065. PubMed ID: 29060057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scalable Anatomically-Tunable Fully In-Ear Dry-Electrode Array for User-Generic Unobtrusive Electrophysiology.
    Lee MS; Paul A; Joung TH; Xu Y; Wu J; Hairston WD; Cauwenberghs G
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Antibacterial Membrane Electrode Based on Bacterial Cellulose/Polyaniline/AgNO
    Zhang N; Yue L; Xie Y; Samuel OW; Omisore OM; Pei W; Xing X; Lin C; Zheng Y; Wang L
    IEEE J Transl Eng Health Med; 2018; 6():2700310. PubMed ID: 30310760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel Multipin Electrode Cap System for Dry Electroencephalography.
    Fiedler P; Pedrosa P; Griebel S; Fonseca C; Vaz F; Supriyanto E; Zanow F; Haueisen J
    Brain Topogr; 2015 Sep; 28(5):647-656. PubMed ID: 25998854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal combination of electrodes and conductive gels for brain electrical impedance tomography.
    Yang L; Li H; Ding J; Li W; Dong X; Wen Z; Shi X
    Biomed Eng Online; 2018 Dec; 17(1):186. PubMed ID: 30572888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards real-life EEG applications: novel superporous hydrogel-based semi-dry EEG electrodes enabling automatically 'charge-discharge' electrolyte.
    Li G; Wang S; Li M; Duan YY
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33721854
    [No Abstract]   [Full Text] [Related]  

  • 28. Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation.
    Chi YM; Cauwenberghs G
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4218-21. PubMed ID: 19964104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Dependence of Electrode Impedance on the Number of Performed EEG Examinations.
    Górecka J; Makiewicz P
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31181738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Active Claw-Shaped Dry Electrodes for EEG Measurement in Hair Areas.
    Wang Z; Ding Y; Yuan W; Chen H; Chen W; Chen C
    Bioengineering (Basel); 2024 Mar; 11(3):. PubMed ID: 38534550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of a Low-Cost EEG Monitoring System and Dry Electrodes toward Clinical Use in the Neonatal ICU.
    O'Sullivan M; Temko A; Bocchino A; O'Mahony C; Boylan G; Popovici E
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31212613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D Printable Dry EEG Electrodes with Coiled-Spring Prongs.
    Kimura M; Nakatani S; Nishida SI; Taketoshi D; Araki N
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of electrode properties on EEG measurements and a related inverse problem.
    Ollikainen JO; Vauhkonen M; Karjalainen PA; Kaipio JP
    Med Eng Phys; 2000 Oct; 22(8):535-45. PubMed ID: 11182578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Textile Electrodes: Influence of Knitting Construction and Pressure on the Contact Impedance.
    Euler L; Guo L; Persson NK
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dependence of Skin-Electrode Contact Impedance on Material and Skin Hydration.
    Goyal K; Borkholder DA; Day SW
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366209
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design Principles and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition With Finger Based Dry Electrodes.
    Nathan V; Jafari R
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):631-40. PubMed ID: 26462239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Motion Interference-Insensitive Flexible Dry Electrode.
    Zhang H; Pei W; Chen Y; Guo X; Wu X; Yang X; Chen H
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1136-44. PubMed ID: 26441439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light-cured polymer electrodes for non-invasive EEG recordings.
    de Camp NV; Kalinka G; Bergeler J
    Sci Rep; 2018 Sep; 8(1):14041. PubMed ID: 30232392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impedance spectroscopy of conductive commercial hydrogels for electromyography and electroencephalography.
    Freire FC; Becchi M; Ponti S; Miraldi E; Strigazzi A
    Physiol Meas; 2010 Oct; 31(10):S157-67. PubMed ID: 20834111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp.
    Lee SM; Kim JH; Park C; Hwang JY; Hong JS; Lee KH; Lee SH
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):138-47. PubMed ID: 26390442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.