BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33018930)

  • 1. Validation of an IMU Gait Analysis Algorithm for Gait Monitoring in Daily Life Situations.
    Zhou L; Tunca C; Fischer E; Brahms CM; Ersoy C; Granacher U; Arnrich B
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4229-4232. PubMed ID: 33018930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of an algorithm to assess regular and irregular gait using inertial sensors in healthy and stroke individuals.
    Ensink C; Smulders K; Warnar J; Keijsers N
    PeerJ; 2023; 11():e16641. PubMed ID: 38111664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of IMU set-ups for the estimation of gait spatio-temporal parameters in an elderly population.
    Digo E; Panero E; Agostini V; Gastaldi L
    Proc Inst Mech Eng H; 2023 Jan; 237(1):61-73. PubMed ID: 36377588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial measurement unit compared to an optical motion capturing system in post-stroke individuals with foot-drop syndrome.
    Feuvrier F; Sijobert B; Azevedo C; Griffiths K; Alonso S; Dupeyron A; Laffont I; Froger J
    Ann Phys Rehabil Med; 2020 May; 63(3):195-201. PubMed ID: 31009801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy validation of a wearable IMU-based gait analysis in healthy female.
    He Y; Chen Y; Tang L; Chen J; Tang J; Yang X; Su S; Zhao C; Xiao N
    BMC Sports Sci Med Rehabil; 2024 Jan; 16(1):2. PubMed ID: 38167148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unrestricted stride detection during stair climbing using IMUs.
    Siebers HL; Siroros N; Alrawashdeh W; Migliorini F; Tingart M; Eschweiler J; Betsch M
    Med Eng Phys; 2021 Jun; 92():10-17. PubMed ID: 34167703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PI-Sole: A Low-Cost Solution for Gait Monitoring Using Off-The-Shelf Piezoelectric Sensors and IMU.
    Chandel V; Singhal S; Sharma V; Ahmed N; Ghose A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3290-3296. PubMed ID: 31946586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Wearable Sensor System to Measure Step-Based Gait Parameters for Parkinson's Disease Rehabilitation.
    Muthukrishnan N; Abbas JJ; Krishnamurthi N
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics and temporospatial parameters during gait from inertial motion capture in adults with and without HIV: a validity and reliability study.
    Berner K; Cockcroft J; Louw Q
    Biomed Eng Online; 2020 Jul; 19(1):57. PubMed ID: 32709239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of IMU-Derived Temporal Gait Parameters in Neurological Diseases.
    Hansen C; Ortlieb C; Romijnders R; Warmerdam E; Welzel J; Geritz J; Maetzler W
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson's Populations.
    Celik Y; Stuart S; Woo WL; Godfrey A
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The placement of foot-mounted IMU sensors does affect the accuracy of spatial parameters during regular walking.
    Küderle A; Roth N; Zlatanovic J; Zrenner M; Eskofier B; Kluge F
    PLoS One; 2022; 17(6):e0269567. PubMed ID: 35679231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation and comparison of shank and lumbar-worn IMUs for step time estimation.
    Johnston W; Patterson M; O'Mahony N; Caulfield B
    Biomed Tech (Berl); 2017 Oct; 62(5):537-545. PubMed ID: 28002026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-Based Step Length Estimation Using a Pendant-Integrated Mobility Sensor.
    Lueken M; Loeser J; Weber N; Bollheimer C; Leonhardt S; Ngo C
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2655-2665. PubMed ID: 34874862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability and concurrent validity of spatiotemporal stride characteristics measured with an ankle-worn sensor among older individuals.
    Rantalainen T; Pirkola H; Karavirta L; Rantanen T; Linnamo V
    Gait Posture; 2019 Oct; 74():33-39. PubMed ID: 31442820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait evaluation using inertial measurement units in subjects with Parkinson's disease.
    Zago M; Sforza C; Pacifici I; Cimolin V; Camerota F; Celletti C; Condoluci C; De Pandis MF; Galli M
    J Electromyogr Kinesiol; 2018 Oct; 42():44-48. PubMed ID: 29940494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity and Reproducibility of Inertial Physilog Sensors for Spatiotemporal Gait Analysis in Patients With Stroke.
    Lefeber N; Degelaen M; Truyers C; Safin I; Beckwee D
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1865-1874. PubMed ID: 31352347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of distal limb mounted inertial measurement unit sensors for stride detection in Warmblood horses at walk and trot.
    Bragança FM; Bosch S; Voskamp JP; Marin-Perianu M; Van der Zwaag BJ; Vernooij JCM; van Weeren PR; Back W
    Equine Vet J; 2017 Jul; 49(4):545-551. PubMed ID: 27862238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring markers of aging and knee osteoarthritis gait using inertial measurement units.
    Hafer JF; Provenzano SG; Kern KL; Agresta CE; Grant JA; Zernicke RF
    J Biomech; 2020 Jan; 99():109567. PubMed ID: 31916999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of algorithms for calculating spatiotemporal gait parameters during continuous turning using lumbar and foot mounted inertial measurement units.
    Kvist A; Tinmark F; Bezuidenhout L; Reimeringer M; Conradsson DM; Franzén E
    J Biomech; 2024 Jan; 162():111907. PubMed ID: 38134464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.