These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33018984)

  • 1. Fabricating Novel PDMS Vessels for Phantoms in Photoplethysmography Investigations.
    Nomoni M; May JM; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4458-4461. PubMed ID: 33018984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Polydimethylsiloxane (PDMS) Pulsatile Vascular Tissue Phantoms for the In-Vitro Investigation of Light Tissue Interaction in Photoplethysmography.
    Nomoni M; May JM; Kyriacou PA
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pulsatile Optical Tissue Phantom for the Investigation of Light-Tissue Interaction in Reflectance Photoplethysmography.
    Nomoni M; May JM; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3204-3207. PubMed ID: 31946569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of a noninvasive optical photoplethysmography imaging device with dynamic tissue phantom models.
    Nwafor CI; Plant KD; King DR; McCall BP; Squiers JJ; Fan W; DiMaio JM; Thatcher JE
    J Biomed Opt; 2017 Sep; 22(9):1-9. PubMed ID: 28895317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Contact Pressure in Reflectance Photoplethysmography in an In Vitro Tissue-Vessel Phantom.
    May JM; Mejía-Mejía E; Nomoni M; Budidha K; Choi C; Kyriacou PA
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and characterization of viscoelastic polydimethylsiloxane phantoms for simulating arterial wall motion.
    Kim JH; Chhai P; Rhee K
    Med Eng Phys; 2021 May; 91():12-18. PubMed ID: 34074461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Customisable Silicone Vessels and Tissue Phantoms for In Vitro Photoplethysmography Investigations into Cardiovascular Disease.
    Karimpour P; Ferizoli R; May JM; Kyriacou PA
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Testing of Artificial Vessels and Tissues for Photoplethysmography Phantoms.
    May JM; Nomoni M; Budidha K; Choi C; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():629-632. PubMed ID: 36086013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiwavelength tissue-mimicking phantoms with tunable vessel pulsation.
    Jenne S; Zappe H
    J Biomed Opt; 2023 Apr; 28(4):045003. PubMed ID: 37077500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoplethysmography for an independent measure of pulsatile pressure under controlled flow conditions.
    Njoum H; Kyriacou PA
    Physiol Meas; 2017 Feb; 38(2):87-100. PubMed ID: 28033109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Vitro Investigation of Flow Profiles in Arteries Using the Photoplethysmograph.
    Pilt K; May JM; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7211-7214. PubMed ID: 34892763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasive continuous estimation of blood flow changes in human patellar bone.
    Näslund J; Pettersson J; Lundeberg T; Linnarsson D; Lindberg LG
    Med Biol Eng Comput; 2006 Jun; 44(6):501-9. PubMed ID: 16937201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pipe Phantoms With Applications in Molecular Imaging and System Characterization.
    Wang S; Herbst EB; Pye SD; Moran CM; Hossack JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):39-52. PubMed ID: 27845659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoplethysmography: Towards a non-invasive pressure measurement technique.
    Njoum H; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():611-614. PubMed ID: 28324935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Custom Wall-Less Cardiovascular Flow Phantoms with Tissue-Mimicking Gel.
    Laughlin ME; Stephens SE; Hestekin JA; Jensen MO
    Cardiovasc Eng Technol; 2022 Feb; 13(1):1-13. PubMed ID: 34080171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography.
    Chatterjee S; Kyriacou PA
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study.
    Shin H; Min SD
    Biomed Eng Online; 2017 Jan; 16(1):10. PubMed ID: 28086939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A flexible blood flow phantom capable of independently producing constant and pulsatile flow with a predictable spatial flow profile for ultrasound flow measurement validations.
    Hein IA; O'Brien WD
    IEEE Trans Biomed Eng; 1992 Nov; 39(11):1111-22. PubMed ID: 1487274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wall-less vessel phantom for Doppler ultrasound studies.
    Rickey DW; Picot PA; Christopher DA; Fenster A
    Ultrasound Med Biol; 1995; 21(9):1163-76. PubMed ID: 8849831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of cold walls on PET image quantification and volume segmentation: a phantom study.
    Berthon B; Marshall C; Edwards A; Evans M; Spezi E
    Med Phys; 2013 Aug; 40(8):082505. PubMed ID: 23927350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.