These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33019051)

  • 1. Using SSVEP-BCI to Continuous Control a Quadcopter with 4-DOF Motions
    Mei J; Xu M; Wang L; Ke Y; Wang Y; Jung TP; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4745-4748. PubMed ID: 33019051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quadcopter Flight Control Using a Non-invasive Multi-Modal Brain Computer Interface.
    Duan X; Xie S; Xie X; Meng Y; Xu Z
    Front Neurorobot; 2019; 13():23. PubMed ID: 31214009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementing a calibration-free SSVEP-based BCI system with 160 targets.
    Chen Y; Yang C; Ye X; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34134091
    [No Abstract]   [Full Text] [Related]  

  • 4. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-performance SSVEP-based BCI using imperceptible flickers.
    Ming G; Pei W; Gao X; Wang Y
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36669202
    [No Abstract]   [Full Text] [Related]  

  • 6. Incorporation of dynamic stopping strategy into the high-speed SSVEP-based BCIs.
    Jiang J; Yin E; Wang C; Xu M; Ming D
    J Neural Eng; 2018 Aug; 15(4):046025. PubMed ID: 29774867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
    Zhu F; Jiang L; Dong G; Gao X; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementing Over 100 Command Codes for a High-Speed Hybrid Brain-Computer Interface Using Concurrent P300 and SSVEP Features.
    Xu M; Han J; Wang Y; Jung TP; Ming D
    IEEE Trans Biomed Eng; 2020 Nov; 67(11):3073-3082. PubMed ID: 32149621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the Performance of Individually Calibrated SSVEP-BCI by Task- Discriminant Component Analysis.
    Liu B; Chen X; Shi N; Wang Y; Gao S; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1998-2007. PubMed ID: 34543200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing SSVEP-Based Brain-Computer Interface with Two-Step Task-Related Component Analysis.
    Lee HK; Choi YS
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bipolar-Channel Hybrid Brain-Computer Interface System for Home Automation Control Utilizing Steady-State Visually Evoked Potential and Eye-Blink Signals.
    Yang D; Nguyen TH; Chung WY
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.
    Chen X; Zhao B; Wang Y; Xu S; Gao X
    Int J Neural Syst; 2018 Oct; 28(8):1850018. PubMed ID: 29768990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SSVEP-assisted RSVP brain-computer interface paradigm for multi-target classification.
    Ko LW; Sandeep Vara Sankar D; Huang Y; Lu YC; Shaw S; Jung TP
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33291083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis.
    Nakanishi M; Wang Y; Chen X; Wang YT; Gao X; Jung TP
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):104-112. PubMed ID: 28436836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple-command single-frequency SSVEP-based BCI system using flickering action video.
    Lim H; Ku J
    J Neurosci Methods; 2019 Feb; 314():21-27. PubMed ID: 30659844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing SSVEP-Based BCI System towards Practical High-Speed Spelling.
    Tang J; Xu M; Han J; Liu M; Dai T; Chen S; Ming D
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32731432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An online SSVEP-BCI system in an optical see-through augmented reality environment.
    Ke Y; Liu P; An X; Song X; Ming D
    J Neural Eng; 2020 Feb; 17(1):016066. PubMed ID: 31614342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A brain-computer interface based on high-frequency steady-state asymmetric visual evoked potentials
    Yue L; Xiao X; Xu M; Chen L; Wang Y; Jung TP; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3090-3093. PubMed ID: 33018658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.