These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33019054)

  • 1. Estimation of Energy Absorption Capability of Arm Using Force Myography for Stable Human-Machine Interaction.
    Ramos A; Hashtrudi-Zaad K
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4758-4761. PubMed ID: 33019054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of force myography for the direct control of an assistive robotic hand orthosis in non-impaired individuals.
    Gantenbein J; Ahmadizadeh C; Heeb O; Lambercy O; Menon C
    J Neuroeng Rehabil; 2023 Aug; 20(1):101. PubMed ID: 37537602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.
    Grosu V; Grosu S; Vanderborght B; Lefeber D; Rodriguez-Guerrero C
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless intraoral tongue control of an assistive robotic arm for individuals with tetraplegia.
    Andreasen Struijk LNS; Egsgaard LL; Lontis R; Gaihede M; Bentsen B
    J Neuroeng Rehabil; 2017 Nov; 14(1):110. PubMed ID: 29110736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An arm for a leg: Adapting a robotic arm for gait rehabilitation.
    Franchi G; Viereck U; Platt R; Yen SC; Hasson CJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3929-32. PubMed ID: 26737153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FMG- and RNN-Based Estimation of Motor Intention of Upper-Limb Motion in Human-Robot Collaboration.
    Anvaripour M; Khoshnam M; Menon C; Saif M
    Front Robot AI; 2020; 7():573096. PubMed ID: 33501334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smooth leader or sharp follower? Playing the mirror game with a robot.
    Kashi S; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):147-159. PubMed ID: 29036853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of tongue interface with keyboard for control of an assistive robotic arm.
    Struijk LNSA; Lontis R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():925-928. PubMed ID: 28813939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.
    Ka HW; Chung CS; Ding D; James K; Cooper R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):140-145. PubMed ID: 28326859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upper-limb kinematic reconstruction during stroke robot-aided therapy.
    Papaleo E; Zollo L; Garcia-Aracil N; Badesa FJ; Morales R; Mazzoleni S; Sterzi S; Guglielmelli E
    Med Biol Eng Comput; 2015 Sep; 53(9):815-28. PubMed ID: 25861746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does?
    Kahn LE; Lum PS; Rymer WZ; Reinkensmeyer DJ
    J Rehabil Res Dev; 2006; 43(5):619-30. PubMed ID: 17123203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.
    Vicentini F; Pedrocchi N; Malosio M; Molinari Tosatti L
    Comput Methods Programs Biomed; 2014 Sep; 116(2):156-68. PubMed ID: 24750989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force Myography-Based Human Robot Interactions via Deep Domain Adaptation and Generalization.
    Zakia U; Menon C
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of robot-assisted training added to conventional rehabilitation in patients with humeral fracture early after surgical treatment: protocol of a randomised, controlled, multicentre trial.
    Nerz C; Schwickert L; Becker C; Studier-Fischer S; Müßig JA; Augat P
    Trials; 2017 Dec; 18(1):589. PubMed ID: 29212528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic estimation of arm mechanical impedance during robotic stroke rehabilitation.
    Palazzolo JJ; Ferraro M; Krebs HI; Lynch D; Volpe BT; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):94-103. PubMed ID: 17436881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm.
    Chen X; Zhao B; Wang Y; Gao X
    J Neural Eng; 2019 Apr; 16(2):026012. PubMed ID: 30523962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.