These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 33019054)
21. Bimanual elbow robotic orthoses: preliminary investigations on an impairment force-feedback rehabilitation method. Herrnstadt G; Alavi N; Randhawa BK; Boyd LA; Menon C Front Hum Neurosci; 2015; 9():169. PubMed ID: 25870555 [TBL] [Abstract][Full Text] [Related]
22. A Framework for User Adaptation and Profiling for Social Robotics in Rehabilitation. Martín A; Pulido JC; González JC; García-Olaya Á; Suárez C Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32854446 [TBL] [Abstract][Full Text] [Related]
23. An intrinsically safe mechanism for physically coupling humans with robots. O'Neill G; Patel H; Artemiadis P IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650510. PubMed ID: 24187325 [TBL] [Abstract][Full Text] [Related]
24. Direct interaction with an assistive robot for individuals with chronic stroke. Kmetz B; Markham H; Brewer BR Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1264-7. PubMed ID: 22254546 [TBL] [Abstract][Full Text] [Related]
25. AMiCUS-A Head Motion-Based Interface for Control of an Assistive Robot. Rudigkeit N; Gebhard M Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31242706 [TBL] [Abstract][Full Text] [Related]
26. Soft brain-machine interfaces for assistive robotics: A novel control approach. Schiatti L; Tessadori J; Barresi G; Mattos LS; Ajoudani A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():863-869. PubMed ID: 28813929 [TBL] [Abstract][Full Text] [Related]
27. Comparative performance analysis of M-IMU/EMG and voice user interfaces for assistive robots. Laureiti C; Cordella F; di Luzio FS; Saccucci S; Davalli A; Sacchetti R; Zollo L IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1001-1006. PubMed ID: 28813952 [TBL] [Abstract][Full Text] [Related]
28. Design of a wearable interface for lightweight robotic arm for people with mobility impairments. Baldi TL; Spagnoletti G; Dragusanu M; Prattichizzo D IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1567-1573. PubMed ID: 28814043 [TBL] [Abstract][Full Text] [Related]
29. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system. Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233 [TBL] [Abstract][Full Text] [Related]
30. Integration of Forearm sEMG Signals with IMU Sensors for Trajectory Planning and Control of Assistive Robotic Arm. Schabron B; Reust A; Desai J; Yihun Y Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5274-5277. PubMed ID: 31947047 [TBL] [Abstract][Full Text] [Related]
31. An Uncontrolled Manifold Analysis of Arm Joint Variability in Virtual Planar Position and Orientation Telemanipulation. Buzzi J; De Momi E; Nisky I IEEE Trans Biomed Eng; 2019 Feb; 66(2):391-402. PubMed ID: 29993394 [TBL] [Abstract][Full Text] [Related]
33. Comparison of two techniques of robot-aided upper limb exercise training after stroke. Stein J; Krebs HI; Frontera WR; Fasoli SE; Hughes R; Hogan N Am J Phys Med Rehabil; 2004 Sep; 83(9):720-8. PubMed ID: 15314537 [TBL] [Abstract][Full Text] [Related]
34. Performing Complex Tasks by Users With Upper-Extremity Disabilities Using a 6-DOF Robotic Arm: A Study. Al-Halimi RK; Moussa M IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):686-693. PubMed ID: 28113593 [TBL] [Abstract][Full Text] [Related]
35. Assistive Control System for Upper Limb Rehabilitation Robot. Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055 [TBL] [Abstract][Full Text] [Related]
36. Intuitive adaptive orientation control of assistive robots for people living with upper limb disabilities. Vu DS; Allard UC; Gosselin C; Routhier F; Gosselin B; Campeau-Lecours A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():795-800. PubMed ID: 28813917 [TBL] [Abstract][Full Text] [Related]
37. A computational model of human-robot load sharing during robot-assisted arm movement training after stroke. Reinkensmeyer DJ; Wolbrecht E; Bobrow J Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4019-23. PubMed ID: 18002881 [TBL] [Abstract][Full Text] [Related]
38. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI. Chen X; Zhao B; Wang Y; Xu S; Gao X Int J Neural Syst; 2018 Oct; 28(8):1850018. PubMed ID: 29768990 [TBL] [Abstract][Full Text] [Related]
39. Association of Individual Characteristics with Teleoperation Performance. Pan D; Zhang Y; Li Z; Tian Z Aerosp Med Hum Perform; 2016 Sep; 87(9):772-80. PubMed ID: 27634696 [TBL] [Abstract][Full Text] [Related]
40. Low-Cost Robotic Guide Based on a Motor Imagery Brain-Computer Interface for Arm Assisted Rehabilitation. Quiles E; Suay F; Candela G; Chio N; Jiménez M; Álvarez-Kurogi L Int J Environ Res Public Health; 2020 Jan; 17(3):. PubMed ID: 31973155 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]