These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 33019062)
1. Analysis of motor unit activities during multiple motor tasks by real-time EMG decomposition: perspective for myoelectric control. Chen C; Yu Y; Sheng X; Zhu X Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4791-4794. PubMed ID: 33019062 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous and proportional control of wrist and hand movements by decoding motor unit discharges in real time. Chen C; Yu Y; Sheng X; Farina D; Zhu X J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33764315 [No Abstract] [Full Text] [Related]
3. Adaptive Real-Time Identification of Motor Unit Discharges From Non-Stationary High-Density Surface Electromyographic Signals. Chen C; Ma S; Sheng X; Farina D; Zhu X IEEE Trans Biomed Eng; 2020 Dec; 67(12):3501-3509. PubMed ID: 32324538 [TBL] [Abstract][Full Text] [Related]
4. Real-Time Hand Gesture Recognition by Decoding Motor Unit Discharges Across Multiple Motor Tasks From Surface Electromyography. Chen C; Yu Y; Sheng X; Meng J; Zhu X IEEE Trans Biomed Eng; 2023 Jul; 70(7):2058-2068. PubMed ID: 37018607 [TBL] [Abstract][Full Text] [Related]
5. Decoding Motor Unit Activity From Forearm Muscles: Perspectives for Myoelectric Control. Kapelner T; Negro F; Aszmann OC; Farina D IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):244-251. PubMed ID: 29324410 [TBL] [Abstract][Full Text] [Related]
6. Prediction of finger kinematics from discharge timings of motor units: implications for intuitive control of myoelectric prostheses. Chen C; Chai G; Guo W; Sheng X; Farina D; Zhu X J Neural Eng; 2019 Apr; 16(2):026005. PubMed ID: 30523815 [TBL] [Abstract][Full Text] [Related]
7. Segment-Wise Decomposition of Surface Electromyography to Identify Discharges Across Motor Neuron Populations. Chen C; Ma S; Yu Y; Sheng X; Zhu X IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2012-2021. PubMed ID: 35853067 [TBL] [Abstract][Full Text] [Related]
8. Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses. Kapelner T; Vujaklija I; Jiang N; Negro F; Aszmann OC; Principe J; Farina D J Neuroeng Rehabil; 2019 Apr; 16(1):47. PubMed ID: 30953528 [TBL] [Abstract][Full Text] [Related]
9. Noninvasive, accurate assessment of the behavior of representative populations of motor units in targeted reinnervated muscles. Farina D; Rehbaum H; Holobar A; Vujaklija I; Jiang N; Hofer C; Salminger S; van Vliet HW; Aszmann OC IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):810-9. PubMed ID: 24760935 [TBL] [Abstract][Full Text] [Related]
10. Non-Invasive Analysis of Motor Unit Activation During Simultaneous and Continuous Wrist Movements. Chen C; Yu Y; Sheng X; Zhu X IEEE J Biomed Health Inform; 2022 May; 26(5):2106-2115. PubMed ID: 34910644 [TBL] [Abstract][Full Text] [Related]
11. A Real-Time Method for Decoding the Neural Drive to Muscles Using Single-Channel Intra-Muscular EMG Recordings. Karimimehr S; Marateb HR; Muceli S; Mansourian M; Mañanas MA; Farina D Int J Neural Syst; 2017 Sep; 27(6):1750025. PubMed ID: 28427290 [TBL] [Abstract][Full Text] [Related]
12. A convolutional neural network to identify motor units from high-density surface electromyography signals in real time. Wen Y; Avrillon S; Hernandez-Pavon JC; Kim SJ; Hug F; Pons JL J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33721852 [No Abstract] [Full Text] [Related]
13. Prediction of Dexterous Finger Forces With Forearm Rotation Using Motoneuron Discharges. Zheng B; Li Y; Xu G; Wang G; Zheng Y IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1994-2004. PubMed ID: 38758613 [TBL] [Abstract][Full Text] [Related]
14. Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms. Muceli S; Jiang N; Farina D IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):623-33. PubMed ID: 24132017 [TBL] [Abstract][Full Text] [Related]
15. Motor unit identification in two neighboring recording positions of the human trapezius muscle during prolonged computer work. Zennaro D; Läubli T; Krueger H Eur J Appl Physiol; 2003 Aug; 89(6):526-35. PubMed ID: 12712348 [TBL] [Abstract][Full Text] [Related]
16. Experimental analysis of accuracy in the identification of motor unit spike trains from high-density surface EMG. Holobar A; Minetto MA; Botter A; Negro F; Farina D IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):221-9. PubMed ID: 20144921 [TBL] [Abstract][Full Text] [Related]
17. Highly Accurate Real-Time Decomposition of Single Channel Intramuscular EMG. Yu T; Akhmadeev K; Carpentier EL; Aoustin Y; Farina D IEEE Trans Biomed Eng; 2022 Feb; 69(2):746-757. PubMed ID: 34388089 [TBL] [Abstract][Full Text] [Related]
18. Sensing and decoding the neural drive to paralyzed muscles during attempted movements of a person with tetraplegia using a sleeve array. Ting JE; Del Vecchio A; Sarma D; Verma N; Colachis SC; Annetta NV; Collinger JL; Farina D; Weber DJ J Neurophysiol; 2021 Dec; 126(6):2104-2118. PubMed ID: 34788156 [TBL] [Abstract][Full Text] [Related]
19. A fast gradient convolution kernel compensation method for surface electromyogram decomposition. Lin C; Cui Z; Chen C; Liu Y; Chen C; Jiang N J Electromyogr Kinesiol; 2024 Jun; 76():102869. PubMed ID: 38479095 [TBL] [Abstract][Full Text] [Related]
20. Optimal Motor Unit Subset Selection for Accurate Motor Intention Decoding: Towards Dexterous Real-Time Interfacing. Yeung D; Negro F; Vujaklija I IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4225-4234. PubMed ID: 37862282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]