These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33019084)

  • 1. Movement strategy and EMG activities of the upper extremity at assisted reaching exercise with a 7 DOF collaborative robot.
    Kato Y; Olensek A; Zadravec M; Matjacic Z; Tsuji T; Cikajlo I
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4886-4889. PubMed ID: 33019084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a mechanism to balance exercise difficulty in robot-assisted upper-extremity rehabilitation after stroke.
    Zimmerli L; Krewer C; Gassert R; Müller F; Riener R; Lünenburger L
    J Neuroeng Rehabil; 2012 Feb; 9():6. PubMed ID: 22304989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exerciser for rehabilitation of the Arm (ERA): Development and unique features of a 3D end-effector robot.
    Milot MH; Hamel M; Provost PO; Bernier-Ouellet J; Dupuis M; Letourneau D; Briere S; Michaud F
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5833-5836. PubMed ID: 28269581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of reaching movements of upper arm in robot assisted exercises. Kinematic assessment of robot assisted upper arm reaching single-joint movements.
    Iuppariello L; D'Addio G; Romano M; Bifulco P; Lanzillo B; Pappone N; Cesarelli M
    G Ital Med Lav Ergon; 2016; 38(2):116-27. PubMed ID: 27459844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot-Assisted Reach Training for Improving Upper Extremity Function of Chronic Stroke.
    Cho KH; Song WK
    Tohoku J Exp Med; 2015 Oct; 237(2):149-55. PubMed ID: 26460793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot-Assisted Reach Training With an Active Assistant Protocol for Long-Term Upper Extremity Impairment Poststroke: A Randomized Controlled Trial.
    Cho KH; Song WK
    Arch Phys Med Rehabil; 2019 Feb; 100(2):213-219. PubMed ID: 30686326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adding Haptic Feedback to Virtual Environments With a Cable-Driven Robot Improves Upper Limb Spatio-Temporal Parameters During a Manual Handling Task.
    Faure C; Fortin-Cote A; Robitaille N; Cardou P; Gosselin C; Laurendeau D; Mercier C; Bouyer L; McFadyen BJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2246-2254. PubMed ID: 32877337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of reaching movement with 6-DOF upper rehabilitation system 'Robotherapist'.
    Kikuchi T; Oda K; Isozumi S; Ohyama Y; Shichi N; Furusho J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4262-5. PubMed ID: 19163654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variable structure pantograph mechanism with spring suspension system for comprehensive upper-limb haptic movement training.
    Perry JC; Oblak J; Jung JH; Cikajlo I; Veneman JF; Goljar N; Bizovičar N; Matjačić Z; Keller T
    J Rehabil Res Dev; 2011; 48(4):317-33. PubMed ID: 21674386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities.
    Li C; Rusák Z; Horváth I; Ji L
    Int J Rehabil Res; 2014 Dec; 37(4):334-42. PubMed ID: 25221845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Case studies in poststroke hemiplegic patients using SEMUL: a passive 2-DOF rehabilitation robot.
    Koyanagi K; Kuwahara Y; Kamida T; Ozawa T; Mizukami R; Genda K; Mori A; Motoyoshi T; Masuta H; Oshima T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4678-4681. PubMed ID: 28269316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performing Complex Tasks by Users With Upper-Extremity Disabilities Using a 6-DOF Robotic Arm: A Study.
    Al-Halimi RK; Moussa M
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):686-693. PubMed ID: 28113593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke.
    Veerbeek JM; Langbroek-Amersfoort AC; van Wegen EE; Meskers CG; Kwakkel G
    Neurorehabil Neural Repair; 2017 Feb; 31(2):107-121. PubMed ID: 27597165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RUPERT closed loop control design.
    Balasubramanian S; Wei R; He J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3467-70. PubMed ID: 19163455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robot-based interception task to quantify upper limb impairments in proprioceptive and visual feedback after stroke.
    Park K; Ritsma BR; Dukelow SP; Scott SH
    J Neuroeng Rehabil; 2023 Oct; 20(1):137. PubMed ID: 37821970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke.
    Mehrholz J; Platz T; Kugler J; Pohl M
    Cochrane Database Syst Rev; 2008 Oct; (4):CD006876. PubMed ID: 18843735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients.
    Casadio M; Giannoni P; Morasso P; Sanguineti V
    Clin Rehabil; 2009 Mar; 23(3):217-28. PubMed ID: 19218297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.