BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33019088)

  • 1. Characterizing Limits of Vision-Based Force Feedback in Simulated Surgical Tool-Tissue Interaction.
    Huang K; Chitrakar D; Mitra R; Subedi D; Su YH
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4903-4908. PubMed ID: 33019088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptic feedback in robot-assisted minimally invasive surgery.
    Okamura AM
    Curr Opin Urol; 2009 Jan; 19(1):102-7. PubMed ID: 19057225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptic Intracorporeal Palpation Using a Cable-Driven Parallel Robot: A User Study.
    Saracino A; Oude-Vrielink TJC; Menciassi A; Sinibaldi E; Mylonas GP
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3452-3463. PubMed ID: 32746002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the Localization of Uterine Leiomyomas Through Cutaneous Softness Rendering for Robot-Assisted Surgical Palpation Applications.
    Doria D; Fani S; Giannini A; Simoncini T; Bianchi M
    IEEE Trans Haptics; 2021; 14(3):503-512. PubMed ID: 33556016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review.
    van der Meijden OA; Schijven MP
    Surg Endosc; 2009 Jun; 23(6):1180-90. PubMed ID: 19118414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Skin Deformation Tactile Feedback for Teleoperated Surgical Tasks.
    Quek ZF; Provancher WR; Okamura AM
    IEEE Trans Haptics; 2019; 12(2):102-113. PubMed ID: 30281480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A toolkit for haptic force feedback in a telerobotic ultrasound system.
    Fotouhi R; Najafi Semnani A; Zhang Q; Adams SJ; Obaid H
    BMC Res Notes; 2021 Oct; 14(1):393. PubMed ID: 34689794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Modular 3-Degrees-of-Freedom Force Sensor for Robot-Assisted Minimally Invasive Surgery Research.
    Chua Z; Okamura AM
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation.
    Meli L; Pacchierotti C; Prattichizzo D
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28218455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Direct and Visual Force Feedback in Suturing Using a 7-DOF Dual-Arm Teleoperated System.
    Talasaz A; Trejos AL; Patel RV
    IEEE Trans Haptics; 2017; 10(2):276-287. PubMed ID: 28113408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surgical Robot with Environment Reconstruction and Force Feedback.
    Li X; Kesavadas T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1861-1866. PubMed ID: 30440759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling.
    Batty T; Ehrampoosh A; Shirinzadeh B; Zhong Y; Smith J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tool/tissue interaction feedback modalities in robot-assisted lump localization.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3854-7. PubMed ID: 17946205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing robotic telesurgery with sensorless haptic feedback.
    Yilmaz N; Burkhart B; Deguet A; Kazanzides P; Tumerdem U
    Int J Comput Assist Radiol Surg; 2024 Jun; 19(6):1147-1155. PubMed ID: 38598140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments.
    Li M; Sareh S; Xu G; Ridzuan MB; Luo S; Xie J; Wurdemann H; Althoefer K
    PLoS One; 2016; 11(6):e0157681. PubMed ID: 27352234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Force-Feedback Methodology for Teleoperated Suturing Task in Robotic-Assisted Minimally Invasive Surgery.
    Ehrampoosh A; Shirinzadeh B; Pinskier J; Smith J; Moshinsky R; Zhong Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
    Ottensmeyer MP; Ben-Ur E; Salisbury JK
    Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.