BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33019093)

  • 1. Wearable Shoulder Exoskeleton with Spring-Cam Mechanism for Customizable, Nonlinear Gravity Compensation.
    Asgari M; Hall PT; Moore BS; Crouch DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4926-4929. PubMed ID: 33019093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Preliminary Evaluation of a Wearable Passive Cam-Based Shoulder Exoskeleton.
    Asgari M; Phillips EA; Dalton BM; Rudl JL; Crouch DL
    J Biomech Eng; 2022 Nov; 144(11):. PubMed ID: 35599348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Mechanically Passive, Wearable Shoulder Exoskeletons on Muscle Output During Dynamic Upper Extremity Movements: A Computational Simulation Study.
    Nelson AJ; Hall PT; Saul KR; Crouch DL
    J Appl Biomech; 2020 Apr; 36(2):59-67. PubMed ID: 31968306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of continuous, mechanically passive, anti-gravity assistance on kinematics and muscle activity during dynamic shoulder elevation.
    Hall PT; Crouch DL
    J Biomech; 2020 Apr; 103():109685. PubMed ID: 32139094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear).
    Chen J; Lum PS
    J Neuroeng Rehabil; 2018 Mar; 15(1):13. PubMed ID: 29499712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Passive Shoulder Exoskeleton Using Link Chains and Magnetic Spring Joints.
    Lee HH; Yoon KT; Lim HH; Lee WK; Jung JH; Kim SB; Choi YM
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():708-717. PubMed ID: 38285587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A passively safe cable driven upper limb rehabilitation exoskeleton.
    Chen Y; Fan J; Zhu Y; Zhao J; Cai H
    Technol Health Care; 2015; 23 Suppl 2():S197-202. PubMed ID: 26410484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Level of exoskeleton support influences shoulder elevation, external rotation and forearm pronation during simulated work tasks in females.
    McFarland TC; McDonald AC; Whittaker RL; Callaghan JP; Dickerson CR
    Appl Ergon; 2022 Jan; 98():103591. PubMed ID: 34628044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IMU-based assistance modulation in upper limb soft wearable exosuits.
    Little K; Antuvan CW; Xiloyannis M; Bernardo A P S N; Kim YG; Masia L; Accoto D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1197-1202. PubMed ID: 31374792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a series wrapping cam mechanism for energy transfer in wearable arm support applications.
    Schroeder JS; Perry JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():585-590. PubMed ID: 28813883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HandMATE: Wearable Robotic Hand Exoskeleton and Integrated Android App for At Home Stroke Rehabilitation.
    Sandison M; Phan K; Casas R; Nguyen L; Lum M; Pergami-Peries M; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4867-4872. PubMed ID: 33019080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Human Lower Limb Mechanical Phantom for the Testing of Knee Exoskeletons.
    Barrutia WS; Bratt J; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2497-2506. PubMed ID: 37186529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Two Series Elastic Actuator Designs Incorporated into a Shoulder Exoskeleton.
    Casas R; Chen T; Lum PS
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():317-322. PubMed ID: 31374649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable Exoskeleton System for Energy Harvesting and Angle Sensing Based on a Piezoelectric Cantilever Generator Array.
    Hu B; Xue J; Jiang D; Tan P; Wang Y; Liu M; Yu H; Zou Y; Li Z
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36622-36632. PubMed ID: 35924818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Experimental Evaluation of a Semi-Passive Upper-Limb Exoskeleton for Workers With Motorized Tuning of Assistance.
    Grazi L; Trigili E; Proface G; Giovacchini F; Crea S; Vitiello N
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2276-2285. PubMed ID: 32755865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Shoulder Mechanism for Assisting Upper Arm Function with Distally Located Actuators.
    Jones M; Bouffard C; Hejrati B
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6233-6236. PubMed ID: 31947267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A portable inflatable soft wearable robot to assist the shoulder during industrial work.
    Zhou YM; Hohimer CJ; Young HT; McCann CM; Pont-Esteban D; Civici US; Jin Y; Murphy P; Wagner D; Cole T; Phipps N; Cho H; Bertacchi F; Pignataro I; Proietti T; Walsh CJ
    Sci Robot; 2024 Jun; 9(91):eadi2377. PubMed ID: 38865477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a wearable shoulder exoskeleton robot with dual-purpose gravity compensation and a compliant misalignment compensation mechanism.
    Atkins J; Chang D; Lee H
    Wearable Technol; 2024; 5():e4. PubMed ID: 38486861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Compact and Lightweight Rehabilitative Exoskeleton to Restore Grasping Functions for People with Hand Paralysis.
    Nazari V; Pouladian M; Zheng YP; Alam M
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.