BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33019093)

  • 21. On the edge between soft and rigid: an assistive shoulder exoskeleton with hyper-redundant kinematics.
    Tiseni L; Xiloyannis M; Chiaradia D; Lotti N; Solazzi M; van der Kooij H; Frisoli A; Masia L
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():618-624. PubMed ID: 31374699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of an upper arm exoskeleton for gravity balancing and minimization of transmitted forces.
    Dubey VN; Agrawal SK
    Proc Inst Mech Eng H; 2011 Nov; 225(11):1025-35. PubMed ID: 22292201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 24. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.
    Chen W; Li Z; Cui X; Zhang J; Bai S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of a perfect balance system for active upper-extremity exoskeletons.
    Smith RL; Lobo-Prat J; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650376. PubMed ID: 24187195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of Gravity Compensation on Upper Extremity Movements in Harmony Exoskeleton.
    Hailey RO; De Oliveira AC; Ghonasgi K; Whitford B; Lee RK; Rose CG; Deshpande AD
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study on the Control Method of Knee Joint Human-Exoskeleton Interactive System.
    Wang Z; Yang C; Ding Z; Yang T; Guo H; Jiang F; Tian B
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy Density and Hysteresis Comparison in Natural Rubber Tube Springs for Wearable Exoskeleton Applications.
    Perry JC; Rathod A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():21-27. PubMed ID: 31374601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A soft wearable robot for the shoulder: Design, characterization, and preliminary testing.
    O'Neill CT; Phipps NS; Cappello L; Paganoni S; Walsh CJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1672-1678. PubMed ID: 28814060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BRIDGE - Behavioural reaching interfaces during daily antigravity activities through upper limb exoskeleton: Preliminary results.
    Gandolla M; Costa A; Aquilante L; Gfoehler M; Puchinger M; Braghin F; Pedrocchi A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1007-1012. PubMed ID: 28813953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers.
    Jo I; Lee J; Park Y; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1615-1620. PubMed ID: 28814051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A tracking device for a wearable high-DOF passive hand exoskeleton.
    Casas R; Martin K; Sandison M; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6643-6646. PubMed ID: 34892631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure.
    Xiao F; Gao Y; Wang Y; Zhu Y; Zhao J
    Technol Health Care; 2017 Jul; 25(S1):3-11. PubMed ID: 28582886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
    Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Divergent Component of Motion Planning and Adaptive Repetitive Control for Wearable Walking Exoskeletons.
    Huang P; Li Z; Zhou M; Kan Z
    IEEE Trans Cybern; 2024 Apr; 54(4):2244-2256. PubMed ID: 36455087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic Evaluation of a Knee Exoskeleton Misalignment Compensation Mechanism Using a Robotic Dummy Leg.
    Massardi S; Rodriguez-Cianca D; Cenciarini M; Costa DC; Font-Llagunes JM; Moreno JC; Lancini M; Torricelli D
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards a wearable hand exoskeleton with embedded synergies.
    Burns MK; Van Orden K; Patel V; Vinjamuri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():213-216. PubMed ID: 29059848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spring operated wearable enhancer for arm rehabilitation (SpringWear) after stroke.
    Ji Chen ; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4893-4896. PubMed ID: 28269367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel passive shoulder exoskeleton for assisting overhead work.
    Ding S; Reyes Francisco A; Li T; Yu H
    Wearable Technol; 2023; 4():e7. PubMed ID: 38487772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.