These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33019093)

  • 41. Clinical Test of a Wearable, High DOF, Spring Powered Hand Exoskeleton (HandSOME II).
    Casas R; Sandison M; Chen T; Lum PS
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1877-1885. PubMed ID: 34478375
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proportional myoelectric and compensating control of a cable-conduit mechanism-driven upper limb exoskeleton.
    Xiao F
    ISA Trans; 2019 Jun; 89():245-255. PubMed ID: 30711342
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Feasibility and efficacy of wearable devices for upper limb rehabilitation in patients with chronic stroke: a randomized controlled pilot study.
    Lin LF; Lin YJ; Lin ZH; Chuang LY; Hsu WC; Lin YH
    Eur J Phys Rehabil Med; 2018 Jun; 54(3):388-396. PubMed ID: 28627862
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Validating Model-Based Prediction Of Biological Knee Moment During Walking With An Exoskeleton in Crouch Gait: Potential Application for Exoskeleton Control.
    Chen J; Damiano DL; Lerner ZF; Bulea TC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():778-783. PubMed ID: 31374725
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Passive Shoulder Exoskeletons: More Effective in the Lab Than in the Field?
    De Bock S; Ghillebert J; Govaerts R; Elprama SA; Marusic U; Serrien B; Jacobs A; Geeroms J; Meeusen R; De Pauw K
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():173-183. PubMed ID: 33264094
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reducing the Energy Cost of Human Running Using an Unpowered Exoskeleton.
    Nasiri R; Ahmadi A; Ahmadabadi MN
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2026-2032. PubMed ID: 30281466
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gravity Compensation of an Exoskeleton Joint Using Constant-Force Springs.
    Hill PW; Wolbrecht ET; Perry JC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():311-316. PubMed ID: 31374648
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential Inverse Kinematics of a Redundant 4R Exoskeleton Shoulder Joint.
    Keemink AQL; van Oort G; Wessels M; Stienen AHA
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):817-829. PubMed ID: 29641386
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation-Vision-Based Control for Precise Reaching Motion of Upper Limb.
    Oguntosin VW; Mori Y; Kim H; Nasuto SJ; Kawamura S; Hayashi Y
    Front Neurosci; 2017; 11():352. PubMed ID: 28736514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exoscore: A Design Tool to Evaluate Factors Associated With Technology Acceptance of Soft Lower Limb Exosuits by Older Adults.
    Shore L; Power V; Hartigan B; Schülein S; Graf E; de Eyto A; O'Sullivan L
    Hum Factors; 2020 May; 62(3):391-410. PubMed ID: 31419179
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unfolding Textile-Based Pneumatic Actuators for Wearable Applications.
    O'Neill CT; McCann CM; Hohimer CJ; Bertoldi K; Walsh CJ
    Soft Robot; 2022 Feb; 9(1):163-172. PubMed ID: 33481682
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influences of different exoskeleton designs and tool mass on physical demands and performance in a simulated overhead drilling task.
    Alabdulkarim S; Nussbaum MA
    Appl Ergon; 2019 Jan; 74():55-66. PubMed ID: 30487110
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design and ergonomic assessment of a passive head/neck supporting exoskeleton for overhead work use.
    Garosi E; Mazloumi A; Jafari AH; Keihani A; Shamsipour M; Kordi R; Kazemi Z
    Appl Ergon; 2022 May; 101():103699. PubMed ID: 35114511
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design-validation of a hand exoskeleton using musculoskeletal modeling.
    Hansen C; Gosselin F; Ben Mansour K; Devos P; Marin F
    Appl Ergon; 2018 Apr; 68():283-288. PubMed ID: 29409646
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Questionnaire results of user experiences with wearable exoskeletons and their preferences for sensory feedback.
    Muijzer-Witteveen H; Sibum N; van Dijsseldonk R; Keijsers N; van Asseldonk E
    J Neuroeng Rehabil; 2018 Nov; 15(1):112. PubMed ID: 30470238
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design of a Passive, Variable Stiffness Exoskeleton for Triceps Deficiency Mitigation.
    McPherson A; Matthew R; Estrada M; Bajcsy R; Tomizuka M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4921-4925. PubMed ID: 33019092
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hopping with degressive spring stiffness in a full-leg exoskeleton lowers metabolic cost compared with progressive spring stiffness and hopping without assistance.
    Allen SP; Grabowski AM
    J Appl Physiol (1985); 2019 Aug; 127(2):520-530. PubMed ID: 31219770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.