These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33019093)

  • 61. Wearable systems for shoulder kinematics assessment: a systematic review.
    Carnevale A; Longo UG; Schena E; Massaroni C; Lo Presti D; Berton A; Candela V; Denaro V
    BMC Musculoskelet Disord; 2019 Nov; 20(1):546. PubMed ID: 31731893
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Linking the mechanics and energetics of hopping with elastic ankle exoskeletons.
    Farris DJ; Sawicki GS
    J Appl Physiol (1985); 2012 Dec; 113(12):1862-72. PubMed ID: 23065760
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design.
    Anderson A; Richburg C; Czerniecki J; Aubin P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A Soft+Rigid Hybrid Exoskeleton Concept in Scissors-Pendulum Mode: A Suit for Human State Sensing and an Exoskeleton for Assistance.
    Ugurlu B; Acer M; Barkana DE; Gocek I; Kucukyilmaz A; Arslan YZ; Basturk H; Samur E; Ugur E; Unal R; Bebek O
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():518-523. PubMed ID: 31374682
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Design of a Low Profile, Unpowered Ankle Exoskeleton That Fits Under Clothes: Overcoming Practical Barriers to Widespread Societal Adoption.
    Yandell MB; Tacca JR; Zelik KE
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):712-723. PubMed ID: 30872237
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A mechatronic leg replica to benchmark human-exoskeleton physical interactions.
    Dežman M; Massardi S; Pinto-Fernandez D; Grosu V; Rodriguez-Guerrero C; Babič J; Torricelli D
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 37068491
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Shoulder muscles electromyographic responses in automotive workers wearing a commercial exoskeleton.
    Pinho JP; Parik Americano P; Taira C; Pereira W; Caparroz E; Forner-Cordero A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4917-4920. PubMed ID: 33019091
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Note: Model-based identification method of a cable-driven wearable device for arm rehabilitation.
    Cui X; Chen W; Zhang J; Wang J
    Rev Sci Instrum; 2015 Sep; 86(9):096107. PubMed ID: 26429494
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Exoskeleton plantarflexion assistance for elderly.
    Galle S; Derave W; Bossuyt F; Calders P; Malcolm P; De Clercq D
    Gait Posture; 2017 Feb; 52():183-188. PubMed ID: 27915222
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Study on the influence of wearable lower limb exoskeleton on gait characteristics].
    Zhang J; Cai Y; Liu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):785-794. PubMed ID: 31631627
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Exoskeletons for workers: A case series study in an enclosures production line.
    Pacifico I; Parri A; Taglione S; Sabatini AM; Violante FS; Molteni F; Giovacchini F; Vitiello N; Crea S
    Appl Ergon; 2022 May; 101():103679. PubMed ID: 35066399
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
    Wu KY; Su YY; Yu YL; Lin KY; Lan CC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine.
    Picchiotti MT; Weston EB; Knapik GG; Dufour JS; Marras WS
    Appl Ergon; 2019 Feb; 75():1-7. PubMed ID: 30509514
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An industrial exoskeleton user acceptance framework based on a literature review of empirical studies.
    Elprama SA; Vanderborght B; Jacobs A
    Appl Ergon; 2022 Apr; 100():103615. PubMed ID: 34847372
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Influence of gravity compensation on muscle activation patterns during different temporal phases of arm movements of stroke patients.
    Prange GB; Jannink MJ; Stienen AH; van der Kooij H; Ijzerman MJ; Hermens HJ
    Neurorehabil Neural Repair; 2009 Jun; 23(5):478-85. PubMed ID: 19190089
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Preliminary Assessment of a Compliant Gait Exoskeleton.
    Cestari M; Sanz-Merodio D; Garcia E
    Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Learning-Based Repetitive Control of a Bowden-Cable-Actuated Exoskeleton with Frictional Hysteresis.
    Shi Y; Guo M; Hui C; Li S; Ji X; Yang Y; Luo X; Xia D
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296027
    [TBL] [Abstract][Full Text] [Related]  

  • 79. New generation emerging technologies for neurorehabilitation and motor assistance.
    Frisoli A; Solazzi M; Loconsole C; Barsotti M
    Acta Myol; 2016 Dec; 35(3):141-144. PubMed ID: 28484314
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation.
    Cortés C; de Los Reyes-Guzmán A; Scorza D; Bertelsen Á; Carrasco E; Gil-Agudo Á; Ruiz-Salguero O; Flórez J
    Biomed Res Int; 2016; 2016():2581924. PubMed ID: 27403420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.