These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33019100)

  • 21. Design and Preliminary Evaluation of a Tongue-Operated Exoskeleton System for Upper Limb Rehabilitation.
    Zhang Z; Prilutsky BI; Butler AJ; Shinohara M; Ghovanloo M
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinematic Redundancy Analysis during Goal-Directed Motion for Trajectory Planning of an Upper-Limb Exoskeleton Robot.
    Wang C; Peng L; Hou ZG; Li J; Luo L; Chen S; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5251-5255. PubMed ID: 31947042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation].
    Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Angular Velocity Profiles of Upper Limb Joint Synergies in Reaching Movements: a pilot study
    Zhang L; Xiao BW; Wu XY; Chen L; Wang YL; Tang SJ; Frisoli A; Hou WS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6420-6423. PubMed ID: 34892581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.
    Chen W; Li Z; Cui X; Zhang J; Bai S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Architectural design and development of an upper-limb rehabilitation device: a modular synthesis approach.
    Gupta S; Agrawal A; Singla E
    Disabil Rehabil Assist Technol; 2024 Jan; 19(1):139-153. PubMed ID: 35549593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a Self-Aligning Four-Finger Exoskeleton for Finger Abduction/Adduction and Flexion/Extension Motion.
    Ge R; Liu Y; Yan Z; Cheng Q; Qiu S; Ming D
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Providing unloading by exoskeleton improves shoulder flexion performance after stroke.
    Perry B; Sivak J; Stokic D
    Exp Brain Res; 2021 May; 239(5):1539-1549. PubMed ID: 33693984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of movement of an elbow joint with a wearable robotic exoskeleton Using OpenSim software.
    Noei V; Lakany H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4342-4345. PubMed ID: 36086238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinematics and workspace analysis of a robotic device for performing rehabilitation therapy of upper limb in stroke-affected patients.
    Valayil TP; Augustine RS
    Acta Bioeng Biomech; 2021; 23(3):175-189. PubMed ID: 34978313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determining User Intent of Partly Dynamic Shoulder Tasks in Individuals With Chronic Stroke Using Pattern Recognition.
    Kopke JV; Ellis MD; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):350-358. PubMed ID: 31751245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
    Wu KY; Su YY; Yu YL; Lin KY; Lan CC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the Capabilities of Harmony for Upper-Limb Stroke Therapy.
    Oliveira AC; Rose CG; Warburton K; Ogden EM; Whitford B; Lee RK; Deshpande AD
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():637-643. PubMed ID: 31374702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preliminary research of a novel center-driven robot for upper extremity rehabilitation.
    Cao W; Zhang F; Yu H; Hu B; Meng Q
    Technol Health Care; 2018; 26(3):409-420. PubMed ID: 29400683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical design of a distal arm exoskeleton for stroke and spinal cord injury rehabilitation.
    Pehlivan AU; Celik O; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975428. PubMed ID: 22275629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Robotic Exoskeleton Motion Constraints on Upper Limb Muscle Synergies: A Case Study.
    Mcdonald CG; Fregly BJ; O'Malley MK
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2086-2095. PubMed ID: 34618674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cable-based parallel manipulator for rehabilitation of shoulder and elbow movements.
    Nunes WM; Rodrigues LA; Oliveira LP; Ribeiro JF; Carvalho JC; Gonçalves RS
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975503. PubMed ID: 22275699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation.
    Liu J; He Y; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(3):747-755. PubMed ID: 34486995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers.
    Jo I; Lee J; Park Y; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1615-1620. PubMed ID: 28814051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.