These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 33019114)
1. Computer Modeling of Drug Delivery with Thermosensitive Liposomes in a Realistic Three-Dimensional Geometry. Ramajayam KK; Wolfe AM; Motamarry A; Yost J; Yost MJ; Haemmerich D Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5021-5024. PubMed ID: 33019114 [TBL] [Abstract][Full Text] [Related]
2. Method of hyperthermia and tumor size influence effectiveness of doxorubicin release from thermosensitive liposomes in experimental tumors. Willerding L; Limmer S; Hossann M; Zengerle A; Wachholz K; Ten Hagen TL; Koning GA; Sroka R; Lindner LH; Peller M J Control Release; 2016 Jan; 222():47-55. PubMed ID: 26658073 [TBL] [Abstract][Full Text] [Related]
3. Temperature sensitive liposomes combined with thermal ablation: Effects of duration and timing of heating in mathematical models and in vivo. Rossmann C; McCrackin MA; Armeson KE; Haemmerich D PLoS One; 2017; 12(6):e0179131. PubMed ID: 28604815 [TBL] [Abstract][Full Text] [Related]
4. Real-time fluorescence imaging for visualization and drug uptake prediction during drug delivery by thermosensitive liposomes. Motamarry A; Negussie AH; Rossmann C; Small J; Wolfe AM; Wood BJ; Haemmerich D Int J Hyperthermia; 2019; 36(1):817-826. PubMed ID: 31451077 [No Abstract] [Full Text] [Related]
5. Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: computational modelling and preliminary in vivovalidation. Gasselhuber A; Dreher MR; Partanen A; Yarmolenko PS; Woods D; Wood BJ; Haemmerich D Int J Hyperthermia; 2012; 28(4):337-48. PubMed ID: 22621735 [TBL] [Abstract][Full Text] [Related]
6. Surrogate MRI markers for hyperthermia-induced release of doxorubicin from thermosensitive liposomes in tumors. Peller M; Willerding L; Limmer S; Hossann M; Dietrich O; Ingrisch M; Sroka R; Lindner LH J Control Release; 2016 Sep; 237():138-46. PubMed ID: 27364227 [TBL] [Abstract][Full Text] [Related]
7. Closed-loop trans-skull ultrasound hyperthermia leads to improved drug delivery from thermosensitive drugs and promotes changes in vascular transport dynamics in brain tumors. Kim C; Guo Y; Velalopoulou A; Leisen J; Motamarry A; Ramajayam K; Aryal M; Haemmerich D; Arvanitis CD Theranostics; 2021; 11(15):7276-7293. PubMed ID: 34158850 [TBL] [Abstract][Full Text] [Related]
8. Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy. Li L; ten Hagen TL; Hossann M; Süss R; van Rhoon GC; Eggermont AM; Haemmerich D; Koning GA J Control Release; 2013 Jun; 168(2):142-50. PubMed ID: 23524188 [TBL] [Abstract][Full Text] [Related]
9. Development and evaluation of an isolated limb infusion model for investigation of drug delivery kinetics to solid tumors by thermosensitive liposomes and hyperthermia. Lokerse WJM; Eggermont AMM; Grüll H; Koning GA J Control Release; 2018 Jan; 270():282-289. PubMed ID: 29269141 [TBL] [Abstract][Full Text] [Related]
10. Localized delivery of therapeutic doxorubicin dose across the canine blood-brain barrier with hyperthermia and temperature sensitive liposomes. Bredlau AL; Motamarry A; Chen C; McCrackin MA; Helke K; Armeson KE; Bynum K; Broome AM; Haemmerich D Drug Deliv; 2018 Nov; 25(1):973-984. PubMed ID: 29688083 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Specificity and Drug Delivery in Tumors by cRGD-Anchoring Thermosensitive Liposomes. Dicheva BM; ten Hagen TL; Seynhaeve AL; Amin M; Eggermont AM; Koning GA Pharm Res; 2015 Dec; 32(12):3862-76. PubMed ID: 26202516 [TBL] [Abstract][Full Text] [Related]
12. Formulation and optimization of idarubicin thermosensitive liposomes provides ultrafast triggered release at mild hyperthermia and improves tumor response. Lu T; Lokerse WJM; Seynhaeve ALB; Koning GA; Ten Hagen TLM J Control Release; 2015 Dec; 220(Pt A):425-437. PubMed ID: 26541464 [TBL] [Abstract][Full Text] [Related]
13. Untargeted Large Volume Hyperthermia Reduces Tumor Drug Uptake From Thermosensitive Liposomes. Ramajayam KK; Wolfe AM; Motamarry A; Nahhas GJ; Yost J; Yost MJ; Haemmerich D IEEE Open J Eng Med Biol; 2021; 2():187-197. PubMed ID: 34734189 [TBL] [Abstract][Full Text] [Related]
14. Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound. Hijnen N; Kneepkens E; de Smet M; Langereis S; Heijman E; Grüll H Proc Natl Acad Sci U S A; 2017 Jun; 114(24):E4802-E4811. PubMed ID: 28566498 [TBL] [Abstract][Full Text] [Related]
15. Investigation of Particle Accumulation, Chemosensitivity and Thermosensitivity for Effective Solid Tumor Therapy Using Thermosensitive Liposomes and Hyperthermia. Lokerse WJ; Bolkestein M; Ten Hagen TL; de Jong M; Eggermont AM; Grüll H; Koning GA Theranostics; 2016; 6(10):1717-31. PubMed ID: 27446503 [TBL] [Abstract][Full Text] [Related]
16. Sequential HIFU heating and nanobubble encapsulation provide efficient drug penetration from stealth and temperature sensitive liposomes in colon cancer. VanOsdol J; Ektate K; Ramasamy S; Maples D; Collins W; Malayer J; Ranjan A J Control Release; 2017 Feb; 247():55-63. PubMed ID: 28042085 [TBL] [Abstract][Full Text] [Related]
17. MR characterization of mild hyperthermia-induced gadodiamide release from thermosensitive liposomes in solid tumors. Peller M; Schwerdt A; Hossann M; Reinl HM; Wang T; Sourbron S; Ogris M; Lindner LH Invest Radiol; 2008 Dec; 43(12):877-92. PubMed ID: 19002060 [TBL] [Abstract][Full Text] [Related]
18. Numerical modeling of high-intensity focused ultrasound-mediated intraperitoneal delivery of thermosensitive liposomal doxorubicin for cancer chemotherapy. Rezaeian M; Sedaghatkish A; Soltani M Drug Deliv; 2019 Dec; 26(1):898-917. PubMed ID: 31526065 [TBL] [Abstract][Full Text] [Related]
19. The antitumor activity of tumor-homing peptide-modified thermosensitive liposomes containing doxorubicin on MCF-7/ADR: in vitro and in vivo. Wang C; Wang X; Zhong T; Zhao Y; Zhang WQ; Ren W; Huang D; Zhang S; Guo Y; Yao X; Tang YQ; Zhang X; Zhang Q Int J Nanomedicine; 2015; 10():2229-48. PubMed ID: 25834435 [TBL] [Abstract][Full Text] [Related]
20. DPPG van Valenberg FJP; Brummelhuis ISG; Lindner LH; Kuhnle F; Wedmann B; Schweizer P; Hossann M; Witjes JA; Oosterwijk E Int J Nanomedicine; 2021; 16():75-88. PubMed ID: 33447028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]