These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33019155)

  • 1. Device Configuration and Patient's Body Composition Significantly Affect RF Heating of Deep Brain Stimulation Implants During MRI: An Experimental Study at 1.5T and 3T.
    Bhusal B; Nguyen BT; Vu J; Elahi B; Rosenow J; Nolt MJ; Pilitsis J; DiMarzio M; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5192-5197. PubMed ID: 33019155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Device Configuration and Patient's Body Composition on the RF Heating and Nonsusceptibility Artifact of Deep Brain Stimulation Implants During MRI at 1.5T and 3T.
    Bhusal B; Nguyen BT; Sanpitak PP; Vu J; Elahi B; Rosenow J; Nolt MJ; Lopez-Rosado R; Pilitsis J; DiMarzio M; Golestanirad L
    J Magn Reson Imaging; 2021 Feb; 53(2):599-610. PubMed ID: 32860322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of surgical modification of deep brain stimulation lead trajectories on radiofrequency heating during MRI at 3T: from phantom experiments to clinical implementation.
    Vu J; Bhusal B; Rosenow JM; Pilitsis J; Golestanirad L
    J Neurosurg; 2024 May; 140(5):1459-1470. PubMed ID: 37948679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertical open-bore MRI scanners generate significantly less radiofrequency heating around implanted leads: A study of deep brain stimulation implants in 1.2T OASIS scanners versus 1.5T horizontal systems.
    Kazemivalipour E; Bhusal B; Vu J; Lin S; Nguyen BT; Kirsch J; Nowac E; Pilitsis J; Rosenow J; Atalar E; Golestanirad L
    Magn Reson Med; 2021 Sep; 86(3):1560-1572. PubMed ID: 33961301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RF heating of deep brain stimulation implants during MRI in 1.2 T vertical scanners versus 1.5 T horizontal systems: A simulation study with realistic lead configurations.
    Kazemivalipour E; Vu J; Lin S; Bhusal B; Thanh Nguyen B; Kirsch J; Elahi B; Rosenow J; Atalar E; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6143-6146. PubMed ID: 33019373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patient's body composition can significantly affect RF power deposition in the tissue around DBS implants: ramifications for lead management strategies and MRI field-shaping techniques.
    Bhusal B; Keil B; Rosenow J; Kazemivalipour E; Golestanirad L
    Phys Med Biol; 2021 Jan; 66(1):015008. PubMed ID: 33238247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of RF heating of deep brain stimulation devices in vertical vs. horizontal MRI systems.
    Vu J; Bhusal B; Nguyen BT; Sanpitak P; Nowac E; Pilitsis J; Rosenow J; Golestanirad L
    PLoS One; 2022; 17(12):e0278187. PubMed ID: 36490249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RF heating of deep brain stimulation implants in open-bore vertical MRI systems: A simulation study with realistic device configurations.
    Golestanirad L; Kazemivalipour E; Lampman D; Habara H; Atalar E; Rosenow J; Pilitsis J; Kirsch J
    Magn Reson Med; 2020 Jun; 83(6):2284-2292. PubMed ID: 31677308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices.
    Kahan J; Papadaki A; White M; Mancini L; Yousry T; Zrinzo L; Limousin P; Hariz M; Foltynie T; Thornton J
    PLoS One; 2015; 10(6):e0129077. PubMed ID: 26061738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Editorial for "Effect of Device Configuration and Patient's Body Composition on the Nonsusceptibility Artifact and RF Heating of Deep Brain Stimulation Devices During MRI at 1.5T and 3T".
    Kremser C
    J Magn Reson Imaging; 2021 Feb; 53(2):611-612. PubMed ID: 32851743
    [No Abstract]   [Full Text] [Related]  

  • 12. Evaluating Accuracy of Numerical Simulations in Predicting Heating of Wire Implants During MRI at 1.5 T.
    Vu J; Bhusal B; Nguyen BT; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6107-6110. PubMed ID: 33019364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A workflow for predicting radiofrequency-induced heating around bilateral deep brain stimulation electrodes in MRI.
    Zulkarnain NIH; Sadeghi-Tarakameh A; Thotland J; Harel N; Eryaman Y
    Med Phys; 2024 Feb; 51(2):1007-1018. PubMed ID: 38153187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the trajectory of deep brain stimulation leads reduces RF heating during MRI at 3 T: Characteristics and clinical translation.
    Vu J; Bhusal B; Rosenow J; Pilitsis J; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconfigurable MRI coil technology can substantially reduce RF heating of deep brain stimulation implants: First in-vitro study of RF heating reduction in bilateral DBS leads at 1.5 T.
    Golestanirad L; Kazemivalipour E; Keil B; Downs S; Kirsch J; Elahi B; Pilitsis J; Wald LL
    PLoS One; 2019; 14(8):e0220043. PubMed ID: 31390346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-Tesla MRI of deep brain stimulation patients: safety assessment of coils and pulse sequences.
    Boutet A; Hancu I; Saha U; Crawley A; Xu DS; Ranjan M; Hlasny E; Chen R; Foltz W; Sammartino F; Coblentz A; Kucharczyk W; Lozano AM
    J Neurosurg; 2019 Feb; 132(2):586-594. PubMed ID: 30797197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the specific absorption rate (SAR) of radiofrequency energy in patients with retained cardiac leads during MRI at 1.5T and 3T.
    Golestanirad L; Rahsepar AA; Kirsch JE; Suwa K; Collins JC; Angelone LM; Keil B; Passman RS; Bonmassar G; Serano P; Krenz P; DeLap J; Carr JC; Wald LL
    Magn Reson Med; 2019 Jan; 81(1):653-669. PubMed ID: 29893997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modifying the trajectory of epicardial leads can substantially reduce MRI-induced RF heating in pediatric patients with a cardiac implantable electronic device at 1.5T.
    Jiang F; Bhusal B; Nguyen B; Monge M; Webster G; Kim D; Bonmassar G; Popsecu AR; Golestanirad L
    Magn Reson Med; 2023 Dec; 90(6):2510-2523. PubMed ID: 37526134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T.
    Kazemivalipour E; Sadeghi-Tarakameh A; Keil B; Eryaman Y; Atalar E; Golestanirad L
    PLoS One; 2023; 18(1):e0280655. PubMed ID: 36701285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical Note: An anthropomorphic phantom with implanted neurostimulator for investigation of MRI safety.
    Yang B; Tam F; Davidson B; Wei PS; Hamani C; Lipsman N; Chen CH; Graham SJ
    Med Phys; 2020 Aug; 47(8):3745-3751. PubMed ID: 32350868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.