BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33019173)

  • 1. Monitoring Focal Laser Ablation with Interstitial Fluence Probes: Monte Carlo Simulation and Phantom Validation.
    Geoghegan R; Priester A; Zhang L; Wu H; Marks L; Natarajan S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5272-5275. PubMed ID: 33019173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiance-based monitoring of the extent of tissue coagulation during laser interstitial thermal therapy.
    Chin LC; Wilson BC; Whelan WM; Vitkin IA
    Opt Lett; 2004 May; 29(9):959-61. PubMed ID: 15143640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interstitial Optical Monitoring of Focal Laser Ablation.
    Geoghegan R; Zhang L; Priester A; Wu HH; Marks L; Natarajan S
    IEEE Trans Biomed Eng; 2022 Aug; 69(8):2545-2556. PubMed ID: 35148260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tissue-mimicking prostate phantom for 980 nm laser interstitial thermal therapy.
    Geoghegan R; Santamaria A; Priester A; Zhang L; Wu H; Grundfest W; Marks L; Natarajan S
    Int J Hyperthermia; 2019; 36(1):993-1002. PubMed ID: 31544549
    [No Abstract]   [Full Text] [Related]  

  • 5. Changes in relative light fluence measured during laser heating: implications for optical monitoring and modelling of interstitial laser photocoagulation.
    Chin LC; Whelan WM; Sherar MD; Vitkin IA
    Phys Med Biol; 2001 Sep; 46(9):2407-20. PubMed ID: 11580177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental modeling of interstitial laser hyperthermia with surface cooling device using Nd
    Pominova DV; Romanishkin ID; Grachev PV; Borodkin AV; Vanetsev AS; Orlovskaya EO; Orlovskii YV; Sildos I; Loschenov VB; Ryabova AV
    Lasers Med Sci; 2019 Sep; 34(7):1421-1431. PubMed ID: 30762195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams.
    Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D
    Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropy functions for low energy interstitial brachytherapy sources: an EGS4 Monte Carlo study.
    Capote R; Mainegra E; López E
    Phys Med Biol; 2001 Jan; 46(1):135-50. PubMed ID: 11197668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A liver-mimicking MRI phantom for thermal ablation experiments.
    Bazrafshan B; Hübner F; Farshid P; Larson MC; Vogel V; Mäntele W; Vogl TJ
    Med Phys; 2011 May; 38(5):2674-84. PubMed ID: 21776804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guide mapping for effective superficial photothermal coagulation of the esophagus using computer simulations with ex vivo sheep model validation study.
    Turker Burhan M; Ersoy N; Bagriyanik HA; Tozburun S
    Lasers Surg Med; 2022 Oct; 54(8):1116-1129. PubMed ID: 36047422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of laser-induced thermotherapy using a dual-reciprocity boundary element model with dynamic tissue properties.
    Zhou J; Chen JK; Zhang Y
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):238-45. PubMed ID: 19695978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in dose with segmentation of breast tissues in Monte Carlo calculations for low-energy brachytherapy.
    Sutherland JG; Thomson RM; Rogers DW
    Med Phys; 2011 Aug; 38(8):4858-65. PubMed ID: 21928657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of thermal tissue coagulation and their value for the planning and monitoring of laser-induced interstitial thermotherapy (LITT).
    Puccini S; Bär NK; Bublat M; Kahn T; Busse H
    Magn Reson Med; 2003 Feb; 49(2):351-62. PubMed ID: 12541256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser thermal therapy: utility of interstitial fluence monitoring for locating optical sensors.
    Whelan WM; Chun P; Chin LC; Sherar MD; Vitkin IA
    Phys Med Biol; 2001 Apr; 46(4):N91-6. PubMed ID: 11324974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of laser wavelength and beam profile on the coagulation depth in a soft tissue phantom model.
    Wehner M; Betz P; Aden M
    Lasers Med Sci; 2019 Mar; 34(2):335-341. PubMed ID: 30043141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance thermometry for predicting thermal damage: an application of interstitial laser coagulation in an in vivo canine prostate model.
    Peters RD; Chan E; Trachtenberg J; Jothy S; Kapusta L; Kucharczyk W; Henkelman RM
    Magn Reson Med; 2000 Dec; 44(6):873-83. PubMed ID: 11108624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo modelling of angular radiance in tissue phantoms and human prostate: PDT light dosimetry.
    Barajas O; Ballangrud AM; Miller GG; Moore RB; Tulip J
    Phys Med Biol; 1997 Sep; 42(9):1675-87. PubMed ID: 9308075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements and Monte Carlo Simulations of 241Am Activities in Three Skull Phantoms: EURADOS-USTUR Collaboration.
    López MA; Nogueira P; Vrba T; Tanner RJ; Rühm W; Tolmachev SY
    Health Phys; 2019 Aug; 117(2):193-201. PubMed ID: 31022011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of image noise contributions in proton computed tomography and comparison to measurements.
    Dickmann J; Wesp P; Rädler M; Rit S; Pankuch M; Johnson RP; Bashkirov V; Schulte RW; Parodi K; Landry G; Dedes G
    Phys Med Biol; 2019 Jul; 64(14):145016. PubMed ID: 31125986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.