BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 33019204)

  • 1. Convolutional Neural Network for Freezing of Gait Detection Leveraging the Continuous Wavelet Transform on Lower Extremities Wearable Sensors Data.
    Shi B; Yen SC; Tay A; Tan DML; Chia NSY; Au WL
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5410-5415. PubMed ID: 33019204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Freezing of Gait Using Convolutional Neural Networks and Data From Lower Limb Motion Sensors.
    Shi B; Tay A; Au WL; Tan DML; Chia NSY; Yen SC
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2256-2267. PubMed ID: 34986092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing inertial measurement unit locations for freezing of gait detection and patient preference.
    O'Day J; Lee M; Seagers K; Hoffman S; Jih-Schiff A; Kidziński Ł; Delp S; Bronte-Stewart H
    J Neuroeng Rehabil; 2022 Feb; 19(1):20. PubMed ID: 35152881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring freezing of gait during daily-life: an open-source, wearable sensors approach.
    Mancini M; Shah VV; Stuart S; Curtze C; Horak FB; Safarpour D; Nutt JG
    J Neuroeng Rehabil; 2021 Jan; 18(1):1. PubMed ID: 33397401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Freezing of Gait in Parkinson's Disease Using Wearables and Machine Learning.
    Borzì L; Mazzetta I; Zampogna A; Suppa A; Olmo G; Irrera F
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel single-sensor-based method for the detection of gait-cycle breakdown and freezing of gait in Parkinson's disease.
    Chomiak T; Xian W; Pei Z; Hu B
    J Neural Transm (Vienna); 2019 Aug; 126(8):1029-1036. PubMed ID: 31154512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time detection of freezing of gait in Parkinson's disease using multi-head convolutional neural networks and a single inertial sensor.
    Borzì L; Sigcha L; Rodríguez-Martín D; Olmo G
    Artif Intell Med; 2023 Jan; 135():102459. PubMed ID: 36628783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wearable-Sensor-based Detection and Prediction of Freezing of Gait in Parkinson's Disease: A Review.
    Pardoel S; Kofman J; Nantel J; Lemaire ED
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction and detection of freezing of gait in Parkinson's disease from plantar pressure data using long short-term memory neural-networks.
    Shalin G; Pardoel S; Lemaire ED; Nantel J; Kofman J
    J Neuroeng Rehabil; 2021 Nov; 18(1):167. PubMed ID: 34838066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foot Pressure Wearable Sensors for Freezing of Gait Detection in Parkinson's Disease.
    Marcante A; Di Marco R; Gentile G; Pellicano C; Assogna F; Pontieri FE; Spalletta G; Macchiusi L; Gatsios D; Giannakis A; Chondrogiorgi M; Konitsiotis S; Fotiadis DI; Antonini A
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33379174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-accuracy wearable detection of freezing of gait in Parkinson's disease based on pseudo-multimodal features.
    Guo Y; Huang D; Zhang W; Wang L; Li Y; Olmo G; Wang Q; Meng F; Chan P
    Comput Biol Med; 2022 Jul; 146():105629. PubMed ID: 35659119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Context Recognition Algorithms for Energy-Efficient Freezing-of-Gait Detection in Parkinson's Disease.
    Borzì L; Sigcha L; Olmo G
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Non-Invasive Medical Device for Parkinson's Patients with Episodes of Freezing of Gait.
    Punin C; Barzallo B; Clotet R; Bermeo A; Bravo M; Bermeo JP; Llumiguano C
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30759789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and prediction of freezing of gait with wearable sensors in Parkinson's disease.
    Zhang W; Sun H; Huang D; Zhang Z; Li J; Wu C; Sun Y; Gong M; Wang Z; Sun C; Cui G; Guo Y; Chan P
    Neurol Sci; 2024 Feb; 45(2):431-453. PubMed ID: 37843692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparative Study of Time Frequency Representation Techniques for Freeze of Gait Detection and Prediction.
    Ashfaque Mostafa T; Soltaninejad S; McIsaac TL; Cheng I
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards Real-Time Detection of Freezing of Gait Using Wavelet Transform on Wireless Accelerometer Data.
    Rezvanian S; Lockhart TE
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27049389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Wearable Sensors and Machine Learning to Automatically Detect Freezing of Gait during a FOG-Provoking Test.
    Reches T; Dagan M; Herman T; Gazit E; Gouskova NA; Giladi N; Manor B; Hausdorff JM
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32785163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of Parkinson's disease and essential tremor based on balance and gait characteristics from wearable motion sensors via machine learning techniques: a data-driven approach.
    Moon S; Song HJ; Sharma VD; Lyons KE; Pahwa R; Akinwuntan AE; Devos H
    J Neuroeng Rehabil; 2020 Sep; 17(1):125. PubMed ID: 32917244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors.
    Vuong TH; Doan T; Takasu A
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.