BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33019215)

  • 1. Predicting Mortality in Critical Care Patients with Fungemia Using Structured and Unstructured Data.
    Baxter SL; Klie AR; Saseendrakumar BR; Ye GY; Hogarth M; Nemati S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5459-5463. PubMed ID: 33019215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining structured and unstructured data for predictive models: a deep learning approach.
    Zhang D; Yin C; Zeng J; Yuan X; Zhang P
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):280. PubMed ID: 33121479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finding the best trade-off between performance and interpretability in predicting hospital length of stay using structured and unstructured data.
    Jaotombo F; Adorni L; Ghattas B; Boyer L
    PLoS One; 2023; 18(11):e0289795. PubMed ID: 38032876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Text Processing for Detection of Fungal Ocular Involvement in Critical Care Patients: Cross-Sectional Study.
    Baxter SL; Klie AR; Radha Saseendrakumar B; Ye GY; Hogarth M
    J Med Internet Res; 2020 Aug; 22(8):e18855. PubMed ID: 32795984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating Structured and Unstructured EHR Data for Predicting Mortality by Machine Learning and Latent Dirichlet Allocation Method.
    Chiu CC; Wu CM; Chien TN; Kao LJ; Li C; Chu CM
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36901354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards unstructured mortality prediction with free-text clinical notes.
    Hashir M; Sawhney R
    J Biomed Inform; 2020 Aug; 108():103489. PubMed ID: 32592755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Predictive Model for 30-Day Mortality of Fungemia in ICUs.
    Xie P; Wang W; Dong M
    Infect Drug Resist; 2022; 15():7841-7852. PubMed ID: 36605852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An empirical evaluation of deep learning for ICD-9 code assignment using MIMIC-III clinical notes.
    Huang J; Osorio C; Sy LW
    Comput Methods Programs Biomed; 2019 Aug; 177():141-153. PubMed ID: 31319942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of admission in pediatric emergency department with deep neural networks and triage textual data.
    Roquette BP; Nagano H; Marujo EC; Maiorano AC
    Neural Netw; 2020 Jun; 126():170-177. PubMed ID: 32240912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Long Short-Term Memory Ensemble Approach for Improving the Outcome Prediction in Intensive Care Unit.
    Xia J; Pan S; Zhu M; Cai G; Yan M; Su Q; Yan J; Ning G
    Comput Math Methods Med; 2019; 2019():8152713. PubMed ID: 31827589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating structured and unstructured data for timely prediction of bloodstream infection among children.
    Tabaie A; Orenstein EW; Kandaswamy S; Kamaleswaran R
    Pediatr Res; 2023 Mar; 93(4):969-975. PubMed ID: 35854085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure Ulcer Injury in Unstructured Clinical Notes: Detection and Interpretation.
    Sotoodeh M; Gero ZH; Zhang W; Hertzberg VS; Ho JC
    AMIA Annu Symp Proc; 2020; 2020():1160-1169. PubMed ID: 33936492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Kidney Transplant Recipient Cohorts' 30-Day Rehospitalization Using Clinical Notes and Electronic Health Care Record Data.
    Arenson M; Hogan J; Xu L; Lynch R; Lee YH; Choi JD; Sun J; Adams A; Patzer RE
    Kidney Int Rep; 2023 Mar; 8(3):489-498. PubMed ID: 36938078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating Natural Language Processing Packages for Predicting Hospital-Acquired Pressure Injuries From Clinical Notes.
    Gu S; Lee EW; Zhang W; Simpson RL; Hertzberg VS; Ho JC
    Comput Inform Nurs; 2024 Mar; 42(3):184-192. PubMed ID: 37607706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid model based on neural networks for biomedical relation extraction.
    Zhang Y; Lin H; Yang Z; Wang J; Zhang S; Sun Y; Yang L
    J Biomed Inform; 2018 May; 81():83-92. PubMed ID: 29601989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting post-stroke pneumonia using deep neural network approaches.
    Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y
    Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sentiment in nursing notes as an indicator of out-of-hospital mortality in intensive care patients.
    Waudby-Smith IER; Tran N; Dubin JA; Lee J
    PLoS One; 2018; 13(6):e0198687. PubMed ID: 29879201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes.
    Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S
    JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of 2 Natural Language Processing Methods for Identification of Bleeding Among Critically Ill Patients.
    Taggart M; Chapman WW; Steinberg BA; Ruckel S; Pregenzer-Wenzler A; Du Y; Ferraro J; Bucher BT; Lloyd-Jones DM; Rondina MT; Shah RU
    JAMA Netw Open; 2018 Oct; 1(6):e183451. PubMed ID: 30646240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring tool usage in surgery videos using boosted convolutional and recurrent neural networks.
    Al Hajj H; Lamard M; Conze PH; Cochener B; Quellec G
    Med Image Anal; 2018 Jul; 47():203-218. PubMed ID: 29778931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.