BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33019259)

  • 1. An automated toolchain for quantitative characterisation of structural connectome from MRI based on non-anatomical cortical parcellation.
    Das S; Maharatna K
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5653-5656. PubMed ID: 33019259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing Connectivity-Driven Brain Parcellation Using Ensemble Clustering.
    Kurmukov A; Mussabaeva A; Denisova Y; Moyer D; Jahanshad N; Thompson PM; Gutman BA
    Brain Connect; 2020 May; 10(4):183-194. PubMed ID: 32264696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DCP: A pipeline toolbox for diffusion connectome.
    Huang W; Dong X; Zhao T; Kucikova L; Fu A; Shu N
    Hum Brain Mapp; 2024 Feb; 45(3):e26626. PubMed ID: 38375916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regionconnect: Rapidly extracting standardized brain connectivity information in voxel-wise neuroimaging studies.
    Qi X; Arfanakis K
    Neuroimage; 2021 Jan; 225():117462. PubMed ID: 33075560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connectomes from streamlines tractography: Assigning streamlines to brain parcellations is not trivial but highly consequential.
    Yeh CH; Smith RE; Dhollander T; Calamante F; Connelly A
    Neuroimage; 2019 Oct; 199():160-171. PubMed ID: 31082471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Edge density imaging: mapping the anatomic embedding of the structural connectome within the white matter of the human brain.
    Owen JP; Chang YS; Mukherjee P
    Neuroimage; 2015 Apr; 109():402-17. PubMed ID: 25592996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain without anatomy: construction and comparison of fully network-driven structural MRI connectomes.
    Tymofiyeva O; Ziv E; Barkovich AJ; Hess CP; Xu D
    PLoS One; 2014; 9(5):e96196. PubMed ID: 24789312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data.
    Schirner M; Rothmeier S; Jirsa VK; McIntosh AR; Ritter P
    Neuroimage; 2015 Aug; 117():343-57. PubMed ID: 25837600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid high-resolution anatomical MRI atlas with sub-parcellation of cortical gyri using resting fMRI.
    Joshi AA; Choi S; Liu Y; Chong M; Sonkar G; Gonzalez-Martinez J; Nair D; Wisnowski JL; Haldar JP; Shattuck DW; Damasio H; Leahy RM
    J Neurosci Methods; 2022 May; 374():109566. PubMed ID: 35306036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connectometry: A statistical approach harnessing the analytical potential of the local connectome.
    Yeh FC; Badre D; Verstynen T
    Neuroimage; 2016 Jan; 125():162-171. PubMed ID: 26499808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a standardized structural-functional group connectome in MNI space.
    Horn A; Blankenburg F
    Neuroimage; 2016 Jan; 124(Pt A):310-322. PubMed ID: 26327244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.
    Chu SH; Parhi KK; Lenglet C
    Sci Rep; 2018 Mar; 8(1):4741. PubMed ID: 29549287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive function, disease burden and the structural connectome in systemic lupus erythematosus.
    Wiseman SJ; Bastin ME; Amft EN; Belch JFF; Ralston SH; Wardlaw JM
    Lupus; 2018 Jul; 27(8):1329-1337. PubMed ID: 29722629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards the "baby connectome": mapping the structural connectivity of the newborn brain.
    Tymofiyeva O; Hess CP; Ziv E; Tian N; Bonifacio SL; McQuillen PS; Ferriero DM; Barkovich AJ; Xu D
    PLoS One; 2012; 7(2):e31029. PubMed ID: 22347423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hierarchical method for whole-brain connectivity-based parcellation.
    Moreno-Dominguez D; Anwander A; Knösche TR
    Hum Brain Mapp; 2014 Oct; 35(10):5000-25. PubMed ID: 24740833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related changes in the topological organization of the white matter structural connectome across the human lifespan.
    Zhao T; Cao M; Niu H; Zuo XN; Evans A; He Y; Dong Q; Shu N
    Hum Brain Mapp; 2015 Oct; 36(10):3777-92. PubMed ID: 26173024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individualized Cortical Parcellation Based on Diffusion MRI Tractography.
    Han M; Yang G; Li H; Zhou S; Xu B; Jiang J; Men W; Ge J; Gong G; Liu H; Gao JH
    Cereb Cortex; 2020 May; 30(5):3198-3208. PubMed ID: 31814022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The parcellation-based connectome: limitations and extensions.
    de Reus MA; van den Heuvel MP
    Neuroimage; 2013 Oct; 80():397-404. PubMed ID: 23558097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural connectome with high angular resolution diffusion imaging MRI: assessing the impact of diffusion weighting and sampling on graph-theoretic measures.
    Caiazzo G; Fratello M; Di Nardo F; Trojsi F; Tedeschi G; Esposito F
    Neuroradiology; 2018 May; 60(5):497-504. PubMed ID: 29520641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periventricular White Matter Is a Nexus for Network Connectivity in the Human Brain.
    Owen JP; Wang MB; Mukherjee P
    Brain Connect; 2016 Sep; 6(7):548-57. PubMed ID: 27345586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.