These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 33019529)

  • 41. Design Optimization for Rough Terrain Traversal Using a Compliant, Continuum-Joint, Quadruped Robot.
    Sherrod V; Johnson CC; Killpack MD
    Front Robot AI; 2022; 9():860020. PubMed ID: 35899074
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Path-following control of wheeled planetary exploration robots moving on deformable rough terrain.
    Ding L; Gao HB; Deng ZQ; Li Z; Xia KR; Duan GR
    ScientificWorldJournal; 2014; 2014():793526. PubMed ID: 24790582
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control strategy of stable walking for a hexapod wheel-legged robot.
    Chen Z; Wang S; Wang J; Xu K; Lei T; Zhang H; Wang X; Liu D; Si J
    ISA Trans; 2021 Feb; 108():367-380. PubMed ID: 32950232
    [TBL] [Abstract][Full Text] [Related]  

  • 44. OctoPath: An OcTree-Based Self-Supervised Learning Approach to Local Trajectory Planning for Mobile Robots.
    Trăsnea B; Ginerică C; Zaha M; Măceşanu G; Pozna C; Grigorescu S
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34067237
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Path Planning and Motion Control of Indoor Mobile Robot under Exploration-Based SLAM (e-SLAM).
    Roy R; Tu YP; Sheu LJ; Chieng WH; Tang LC; Ismail H
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050664
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automatic Waypoint Generation to Improve Robot Navigation Through Narrow Spaces.
    Moreno FA; Monroy J; Ruiz-Sarmiento JR; Galindo C; Gonzalez-Jimenez J
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31906184
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Implementation of a Long Short-Term Memory Neural Network-Based Algorithm for Dynamic Obstacle Avoidance.
    Mulás-Tejeda E; Gómez-Espinosa A; Escobedo Cabello JA; Cantoral-Ceballos JA; Molina-Leal A
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793861
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Safe Trajectory Planning for Incremental Robots Based on a Spatiotemporal Variable-Step-Size A* Algorithm.
    Hu H; Wen X; Hu J; Chen H; Xia C; Zhang H
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894430
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Navigation Simulation of a Mecanum Wheel Mobile Robot Based on an Improved A* Algorithm in Unity3D.
    Li Y; Dai S; Shi Y; Zhao L; Ding M
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284498
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Parallel Sensor-Space Lattice Planner for Real-Time Obstacle Avoidance.
    Martinez Rocamora B; Pereira GAS
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808276
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Review of wheeled mobile robot collision avoidance under unknown environment.
    Wang Y; Li X; Zhang J; Li S; Xu Z; Zhou X
    Sci Prog; 2021; 104(3):368504211037771. PubMed ID: 34379021
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Can Genetic Algorithms Be Used for Real-Time Obstacle Avoidance for LiDAR-Equipped Mobile Robots?
    Gyenes Z; Bölöni L; Szádeczky-Kardoss EG
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991749
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Obstacle Capability of an Air-Ground Amphibious Reconnaissance Robot with a Planetary Wheel-Leg Type Structure.
    Zhang E; Sun R; Pang Z; Liu S
    Appl Bionics Biomech; 2021; 2021():7925707. PubMed ID: 34840605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toward the Intelligent, Safe Exploration of a Biomimetic Underwater Robot: Modeling, Planning, and Control.
    Wang Y; Wang J; Yu L; Kong S; Yu J
    Biomimetics (Basel); 2024 Feb; 9(3):. PubMed ID: 38534811
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hands to Hexapods, Wearable User Interface Design for Specifying Leg Placement for Legged Robots.
    Zhou J; Nguyen Q; Kamath S; Hacohen Y; Zhu C; Fu MJ; Daltorio KA
    Front Robot AI; 2022; 9():852270. PubMed ID: 35494545
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Compact Magnetic Field-Based Obstacle Detection and Avoidance System for Miniature Spherical Robots.
    Wu F; Vibhute A; Soh GS; Wood KL; Foong S
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28555030
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Motion Planning for a Legged Robot with Dynamic Characteristics.
    Liu X; Yang L; Chen Z; Zhong J; Gao F
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338815
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Model Predictive Control of a Novel Wheeled-Legged Planetary Rover for Trajectory Tracking.
    He J; Sun Y; Yang L; Gao F
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684785
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Double-robot obstacle avoidance path optimization for welding process.
    Wang XW; Tang B; Zhou X; Gu XS
    Math Biosci Eng; 2019 Jun; 16(5):5697-5708. PubMed ID: 31499733
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Online on-Road Motion Planning Based on Hybrid Potential Field Model for Car-Like Robot.
    Chen X; Huang Z; Sun Y; Zhong Y; Gu R; Bai L
    J Intell Robot Syst; 2022; 105(1):7. PubMed ID: 35469239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.