These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33019638)

  • 1. Bis-Lactam Peptide [
    Wu B; Zheng W
    Molecules; 2020 Oct; 25(19):. PubMed ID: 33019638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel all-hydrocarbon stapled p110α[E545K] peptides as blockers of the oncogenic p110α[E545K]-IRS1 interaction.
    Hu X; He Y; Wu L; Hao Y; Wang Z; Zheng W
    Bioorg Med Chem Lett; 2017 Dec; 27(24):5446-5449. PubMed ID: 29138025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variable-Length Ester-Based Staples for α-Helical Peptides by Using A Double Thiol-ene Reaction.
    Paterson DL; Flanagan JU; Shepherd PR; Harris PWR; Brimble MA
    Chemistry; 2020 Aug; 26(47):10826-10833. PubMed ID: 32232881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring biocompatible chemistry to create stapled and photoswitchable variants of the antimicrobial peptide aurein 1.2.
    Coram AE; Morewood R; Voss S; Price JL; Nitsche C
    J Pept Sci; 2024 Apr; 30(4):e3551. PubMed ID: 37926859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hydrocarbon stapling on the properties of α-helical antimicrobial peptides isolated from the venom of hymenoptera.
    Chapuis H; Slaninová J; Bednárová L; Monincová L; Buděšínský M; Čeřovský V
    Amino Acids; 2012 Nov; 43(5):2047-58. PubMed ID: 22526241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cys-Cys and Cys-Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents.
    Ceballos J; Grinhagena E; Sangouard G; Heinis C; Waser J
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):9022-9031. PubMed ID: 33450121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactam bridge stabilization of alpha-helical peptides: ring size, orientation and positional effects.
    Houston ME; Gannon CL; Kay CM; Hodges RS
    J Pept Sci; 1995; 1(4):274-82. PubMed ID: 9223005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of Coiled-Coil Binding Strength and Fusogenicity through Peptide Stapling.
    Crone NSA; Kros A; Boyle AL
    Bioconjug Chem; 2020 Mar; 31(3):834-843. PubMed ID: 32058706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine Tuning the Properties of Stapled Peptides by Stereogenic α-Amino Acid Bridges.
    Wang Q; Wang F; Li R; Wang P; Yuan R; Liu D; Liu Y; Luan Y; Wang C; Dong S
    Chemistry; 2023 May; 29(29):e202203624. PubMed ID: 36891840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of 2-component i, i + 3 peptide stapling using thioethers.
    St Louis LE; Rodriguez TM; Waters ML
    Bioorg Med Chem; 2018 Mar; 26(6):1203-1205. PubMed ID: 29122441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-Triggered Reversible Switching between Dynamic and Quasi-static α-Helical Peptides.
    Ousaka N; MacLachlan MJ; Akine S
    Chemistry; 2024 Oct; 30(56):e202402704. PubMed ID: 39023308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stapling strategy for slowing helicity interconversion of α-helical peptides and isolating chiral auxiliary-free one-handed forms.
    Ousaka N; MacLachlan MJ; Akine S
    Nat Commun; 2023 Oct; 14(1):6834. PubMed ID: 37884515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel peptide stapling strategy enables the retention of ring-closing amino acid side chains for the Wnt/β-catenin signalling pathway.
    Wu Y; Li YH; Li X; Zou Y; Liao HL; Liu L; Chen YG; Bierer D; Hu HG
    Chem Sci; 2017 Nov; 8(11):7368-7373. PubMed ID: 29163887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactam-Stapled Cell-Penetrating Peptides: Cell Uptake and Membrane Binding Properties.
    Klein MJ; Schmidt S; Wadhwani P; Bürck J; Reichert J; Afonin S; Berditsch M; Schober T; Brock R; Kansy M; Ulrich AS
    J Med Chem; 2017 Oct; 60(19):8071-8082. PubMed ID: 28921993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Interplay of Disulfide Bonds, α-Helicity, and Hydrophobic Interactions Leads to Ultrahigh Proteolytic Stability of Peptides.
    Chen Y; Yang C; Li T; Zhang M; Liu Y; Gauthier MA; Zhao Y; Wu C
    Biomacromolecules; 2015 Aug; 16(8):2347-55. PubMed ID: 26156023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insertion of multiple alpha-amino gamma-lactam (Agl) residues into a peptide sequence by solid-phase synthesis on synphase lanterns.
    Ronga L; Jamieson AG; Beauregard K; Quiniou C; Chemtob S; Lubell WD
    Biopolymers; 2010; 94(2):183-91. PubMed ID: 20225301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of the amino acid sequence on the conformation of side chain lactam-bridged octapeptides.
    Neukirchen S; Krieger V; Roschger C; Schubert M; Elsässer B; Cabrele C
    J Pept Sci; 2017 Jul; 23(7-8):587-596. PubMed ID: 28370688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Methodology for Incorporating Chiral Linkers into Stapled Peptides.
    Serrano JC; Sipthorp J; Xu W; Itzhaki LS; Ley SV
    Chembiochem; 2017 Jun; 18(12):1066-1071. PubMed ID: 28388005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new i, i + 3 peptide stapling system for α-helix stabilization.
    Shim SY; Kim YW; Verdine GL
    Chem Biol Drug Des; 2013 Dec; 82(6):635-42. PubMed ID: 24267668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclobutane-bearing restricted anchoring residues enabled geometry-specific hydrocarbon peptide stapling.
    Chen B; Liu C; Cong W; Gao F; Zou Y; Su L; Liu L; Hillisch A; Lehmann L; Bierer D; Li X; Hu HG
    Chem Sci; 2023 Oct; 14(41):11499-11506. PubMed ID: 37886087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.