BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 33020190)

  • 21. Verification of protein disulfide bond arrangement by in-gel tryptic digestion under entirely neutral pH conditions.
    Saito K; Yasuo I; Uchimura H; Koide-Yoshida S; Mizuguchi T; Kiso Y
    Proteomics; 2010 Apr; 10(7):1505-9. PubMed ID: 20127682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry.
    Chen R; Jiang X; Sun D; Han G; Wang F; Ye M; Wang L; Zou H
    J Proteome Res; 2009 Feb; 8(2):651-61. PubMed ID: 19159218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applying multiple proteases to direct digestion of hundred-scale cell samples for proteome analysis.
    Chen Q; Yan G; Zhang X
    Rapid Commun Mass Spectrom; 2015 Aug; 29(15):1389-94. PubMed ID: 26147478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extended bottom-up proteomics with secreted aspartic protease Sap9.
    Laskay ÜA; Srzentić K; Monod M; Tsybin YO
    J Proteomics; 2014 Oct; 110():20-31. PubMed ID: 25123351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-protease analysis of Pleistocene bone proteomes.
    Lanigan LT; Mackie M; Feine S; Hublin JJ; Schmitz RW; Wilcke A; Collins MJ; Cappellini E; Olsen JV; Taurozzi AJ; Welker F
    J Proteomics; 2020 Sep; 228():103889. PubMed ID: 32652221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The use of proteases complementary to trypsin to probe isoforms and modifications.
    Trevisiol S; Ayoub D; Lesur A; Ancheva L; Gallien S; Domon B
    Proteomics; 2016 Mar; 16(5):715-28. PubMed ID: 26663565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Native protein proteolysis in an immobilized enzyme reactor as a function of temperature.
    Rivera-Burgos D; Regnier FE
    Anal Chem; 2012 Aug; 84(16):7021-8. PubMed ID: 22845770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of the digestion technique, protease, and missed cleavage peptides in protein quantitation.
    Chiva C; Ortega M; Sabidó E
    J Proteome Res; 2014 Sep; 13(9):3979-86. PubMed ID: 24986539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of a mass spectrometry-grade protease with PTM-directed specificity.
    Tran DT; Cavett VJ; Dang VQ; Torres HL; Paegel BM
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14686-14691. PubMed ID: 27940920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile synthesis of magnetic metal organic frameworks for highly efficient proteolytic digestion used in mass spectrometry-based proteomics.
    Zhai R; Yuan Y; Jiao F; Hao F; Fang X; Zhang Y; Qian X
    Anal Chim Acta; 2017 Nov; 994():19-28. PubMed ID: 29126465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ArgC-Like Digestion: Complementary or Alternative to Tryptic Digestion?
    Golghalyani V; Neupärtl M; Wittig I; Bahr U; Karas M
    J Proteome Res; 2017 Feb; 16(2):978-987. PubMed ID: 28051317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tryptic Peptides Bearing C-Terminal Dimethyllysine Need to Be Considered during the Analysis of Lysine Dimethylation in Proteomic Study.
    Chen M; Zhang M; Zhai L; Hu H; Liu P; Tan M
    J Proteome Res; 2017 Sep; 16(9):3460-3469. PubMed ID: 28730820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Getting intimate with trypsin, the leading protease in proteomics.
    Vandermarliere E; Mueller M; Martens L
    Mass Spectrom Rev; 2013; 32(6):453-65. PubMed ID: 23775586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping the protein domain structures of the respiratory mucins: a mucin proteome coverage study.
    Cao R; Wang TT; DeMaria G; Sheehan JK; Kesimer M
    J Proteome Res; 2012 Aug; 11(8):4013-23. PubMed ID: 22663354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Addressing trypsin bias in large scale (phospho)proteome analysis by size exclusion chromatography and secondary digestion of large post-trypsin peptides.
    Tran BQ; Hernandez C; Waridel P; Potts A; Barblan J; Lisacek F; Quadroni M
    J Proteome Res; 2011 Feb; 10(2):800-11. PubMed ID: 21166477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers.
    Heller M; Mattou H; Menzel C; Yao X
    J Am Soc Mass Spectrom; 2003 Jul; 14(7):704-18. PubMed ID: 12837592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying Missing (Phospho)Proteome Regions with the Broad-Specificity Protease Subtilisin.
    Gonczarowska-Jorge H; Loroch S; Dell'Aica M; Sickmann A; Roos A; Zahedi RP
    Anal Chem; 2017 Dec; 89(24):13137-13145. PubMed ID: 29136377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the possible proteomic application of trypsin from Streptomyces griseus.
    Stosová T; Sebela M; Rehulka P; Sedo O; Havlis J; Zdráhal Z
    Anal Biochem; 2008 May; 376(1):94-102. PubMed ID: 18261455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unambiguous Phosphosite Localization through the Combination of Trypsin and LysargiNase Mirror Spectra in a Large-Scale Phosphoproteome Study.
    Xu F; Yu L; Peng X; Zhang J; Li S; Liu S; Yin Y; An Z; Wang F; Fu Y; Xu P
    J Proteome Res; 2020 Jun; 19(6):2185-2194. PubMed ID: 32388983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complete assignment of neurophysin disulfides indicates pairing in two separate domains.
    Burman S; Wellner D; Chait B; Chaudhary T; Breslow E
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):429-33. PubMed ID: 2911588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.